ENGINEERING MATHEMATICS

YEAR 2012

MCQ 1.1 The area enclosed between the straight line $y=x$ and the parabola $y=x^{2}$ in the $x-y$ plane is
(A) $1 / 6$
(B) $1 / 4$
(C) $1 / 3$
(D) $1 / 2$

MCQ 1.2 Consider the function $f(x)=|x|$ in the interval $-1 \leq x \leq 1$. At the point $x=0, f(x)$ is
(A) continuous and differentiable
(B) non-continuous and differentiable
(C) continuous and non-differentiable
(D) neither continuous nor differentiable

MCQ $1.3 \quad \lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x^{2}}\right)$ is

(A) $1 / 4$
(B) $1 / 2$
(C) 1
(D) 2

MCQ 1.4 At $x=0$, the function $f(x)=x^{3}+1$ has
(A) a maximum value
(B) a minimum value
(C) a singularity
(D) a point of inflection

MCQ 1.5 For the spherical surface $x^{2}+y^{2}+z^{2}=1$, the unit outward normal vector at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is given by
(A) $\frac{1}{\sqrt{2}} \boldsymbol{i}+\frac{1}{\sqrt{2}} \boldsymbol{j}$
(B) $\frac{1}{\sqrt{2}} \boldsymbol{i}-\frac{1}{\sqrt{2}} \boldsymbol{j}$
(C) k
(D) $\frac{1}{\sqrt{3}} \boldsymbol{i}+\frac{1}{\sqrt{3}} \boldsymbol{j}+\frac{1}{\sqrt{3}} \boldsymbol{k}$

GATE Previous Year Solved Paper For Mechanical Engineering

YEAR 2012

TWO MARKS
MCQ 1.6 The inverse Laplace transform of the function $F(s)=\frac{1}{s(s+1)}$ is given by
(A) $f(t)=\sin t$
(B) $f(t)=e^{-t} \sin t$
(C) $f(t)=e^{-t}$
(D) $f(t)=1-e^{-t}$

MCQ 1.7 For the matrix $\boldsymbol{A}=\left[\begin{array}{ll}5 & 3 \\ 1 & 3\end{array}\right]$, ONE of the normalized eigen vectors given as
(A) $\binom{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$
(B) $\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}$
(C) $\binom{\frac{3}{\sqrt{10}}}{\frac{-1}{\sqrt{10}}}$
(D) $\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}$

MCQ 1.8 A box contains 4 red balls and 6 black balls. Three balls are selected randomly from the box one after another, without replacement. The probability that the selected set contains one red ball and two black balls is
(A) $1 / 20$
(B) $1 / 12$
(C) $3 / 10$
(D) $1 / 2$

MCQ 1.9 Consider the differential equation $x^{2}\left(d^{2} y / d x^{2}\right)+x(d y / d x)-4 y=0$ with the boundary conditions of $\bar{y}(0)=0$ and $y(1)=1$. The complete solution of the differential equation is
(A) x^{2}
(B) $\sin \left(\frac{\pi x}{2}\right)$
(C) $e^{x} \sin \left(\frac{\pi x}{2}\right)$
(D) $e^{-x} \sin \left(\frac{\pi x}{2}\right)$

MCQ 1.10

$$
\begin{array}{r}
x+2 y+z=4 \\
2 x+y+2 z=5 \\
x-y+z=1
\end{array}
$$

The system of algebraic equations given above has
(A) a unique solution of $x=1, y=1$ and $z=1$.
(B) only the two solutions of $(x=1, y=1, z=1)$ and $(x=2, y=1, z=0)$
(C) infinite number of solutions
(D) no feasible solution

YEAR 2011
MCQ 1.11 A series expansion for the function $\sin \theta$ is
GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY
ISBN: 9788192276250
(A) $1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots$
(B) $\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\ldots$
(C) $1+\theta+\frac{\theta^{2}}{2!}+\frac{\theta^{3}}{3!}+\ldots$
(D) $\theta+\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}+\ldots$

MCQ 1.12 What is $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}$ equal to ?
(A) θ
(B) $\sin \theta$
(C) 0
(D) 1

MCQ 1.13 Eigen values of a real symmetric matrix are always
(A) positive
(B) negative
(C) real
(D) complex

MCQ 1.14 The product of two complex numbers $1+i$ and $2-5 i$ is
(A) $7-3 i$
(B) $3-4 i$
(C) $-3-4 i$
(D) $7+3 i$

MCQ 1.15 If $f(x)$ is an even function and a is a positive real number, then $\int_{-a}^{a} f(x) d x$ equals
(A) 0
(B) a
(C) $2 a$
(D) $2 \int_{0}^{a} f(x) d x$

YEAR 2011
TWO MARKS
MCQ 1.16 The integral $\int_{1}^{3} \frac{1}{x} d x$, when evaluated by using Simpson's $1 / 3$ rule on two equal sub-intervals each of length 1 , equals
(A) 1.000
(B) 1.098
(C) 1.111
(D) 1.120

MCQ 1.17 Consider the differential equation $\frac{d y}{d x}=\left(1+y^{2}\right) x$. The general solution with constant c is
(A) $y=\tan \frac{x^{2}}{2}+\tan c$
(B) $y=\tan ^{2}\left(\frac{x}{2}+c\right)$
(C) $y=\tan ^{2}\left(\frac{x}{2}\right)+c$
(D) $y=\tan \left(\frac{x^{2}}{2}+c\right)$

MCQ 1.18 An unbiased coin is tossed five times. The outcome of each toss is either a head or a tail. The probability of getting at least one head is
(A) $\frac{1}{32}$
(B) $\frac{13}{32}$
(C) $\frac{16}{32}$
(D) $\frac{31}{32}$

GATE Previous Year Solved Paper For Mechanical Engineering

MCQ 1.19 Consider the following system of equations

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & =0 \\
x_{2}-x_{3} & =0 \\
x_{1}+x_{2} & =0
\end{aligned}
$$

This system has
(A) a unique solution
(B) no solution
(C) infinite number of solutions
(D) five solutions

YEAR 2010
ONE MARK
MCQ 1.20 The parabolic arc $y=\sqrt{x}, 1 \leq x \leq 2$ is revolved around the x-axis. The volume of the solid of revolution is
(A) $\pi / 4$
(B) $\pi / 2$
(C) $3 \pi / 4$
(D) $3 \pi / 2$

MCQ 1.21 The Blasius equation, $\frac{d^{3} f}{d \eta^{3}}+\frac{f}{2} \frac{d^{2} f}{d \eta^{2}}=0$, is a
(A) second order nonlinear ordinary differential equation
(B) third order nonlinear ordinary differential equation
(C) third order linear ordinary differential equation
(D) mixed order nonlinear ordinary differential equation

MCQ 1.22 The value of the integral $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$ is
(A) $-\pi$
(B) $-\pi / 2$
(C) $\pi / 2$
(D) π

MCQ 1.23 The modulus of the complex number $\left(\frac{3+4 i}{1-2 i}\right)$ is
(A) 5
(B) $\sqrt{5}$
(C) $1 / \sqrt{5}$
(D) $1 / 5$

MCQ 1.24 The function $y=|2-3 x|$
(A) is continuous $\forall x \in R$ and differentiable $\forall x \in R$
(B) is continuous $\forall x \in R$ and differentiable $\forall x \in R$ except at $x=3 / 2$
(C) is continuous $\forall x \in R$ and differentiable $\forall x \in R$ except at $x=2 / 3$
(D) is continuous $\forall x \in R$ except $x=3$ and differentiable $\forall x \in R$

YEAR 2010

MCQ 1.25 One of the eigen vectors of the matrix $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ is
(A) $\left[\begin{array}{r}2 \\ -1\end{array}\right]$
(B) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$
(C) $\left[\begin{array}{l}4 \\ 1\end{array}\right]$
(D) $\left[\begin{array}{r}1 \\ -1\end{array}\right]$

MCQ 1.26 The Laplace transform of a function $f(t)$ is $\frac{1}{s^{2}(s+1)}$. The function $f(t)$ is
(A) $t-1+e^{-t}$
(B) $t+1+e^{-t}$
(C) $-1+e^{-t}$
(D) $2 t+e^{t}$

MCQ 1.27 A box contains 2 washers, 3 nuts and 4 bolts. Items are drawn from the box at random one at a time without replacement. The probability of drawing 2 washers first followed by 3 nuts and subsequently the 4 bolts is
(A) $2 / 315$
(B) $1 / 630$
(C) $1 / 1260$
(D) $1 / 2520$

MCQ 1.28 Torque exerted on a flywheel over a cycle is listed in the table. Flywheel energy (in J per unit cycle) using Simpson's rule is

Angle (Degree)	0	60°	120°	180°	240°	300°	360°
Torque (N-m)	0	1066	-323	0	323	-355	0

(A) 542
(B) 993
(C) 1444
(D) 1986

YEAR 2009

ONE MARK
MCQ 1.29 For a matrix $[M]=\left[\begin{array}{rr}3 / 5 & 4 / 5 \\ x & 3 / 5\end{array}\right]$, the transpose of the matrix is equal to the inverse of the matrix, $[M]^{T}=[M]^{-1}$. The value of x is given by
(A) $-\frac{4}{5}$
(B) $-\frac{3}{5}$
(C) $\frac{3}{5}$
(D) $\frac{4}{5}$

MCQ 1.30 The divergence of the vector field $3 x z \boldsymbol{i}+2 x y \boldsymbol{j}-y z^{2} \boldsymbol{k}$ at a point $(1,1,1)$ is equal to
(A) 7
(B) 4
(C) 3
(D) 0

GATE Previous Year Solved Paper For Mechanical Engineering

MCQ 1.31 The inverse Laplace transform of $1 /\left(s^{2}+s\right)$ is
(A) $1+e^{t}$
(B) $1-e^{t}$
(C) $1-e^{-t}$
(D) $1+e^{-t}$

MCQ 1.32 If three coins are tossed simultaneously, the probability of getting at least one head is
(A) $1 / 8$
(B) $3 / 8$
(C) $1 / 2$
(D) $7 / 8$

MCQ 1.33 An analytic function of a complex variable $z=x+i y$ is expressed as $f(z)=u(x, y)+i v(x, y)$ where $i=\sqrt{-1}$. If $u=x y$, the expression for v should be
(A) $\frac{(x+y)^{2}}{2}+k$
(B) $\frac{x^{2}-y^{2}}{2}+k$
(C) $\frac{y^{2}-x^{2}}{2}+k$
(D) $\frac{(x-y)^{2}}{2}+k$

MCQ 1.34 The solution of $x \frac{d y}{d x}+y=x^{4}$ with the condition $y(1)=\frac{6}{5}$ is
(A) $y=\frac{x^{4}}{5}+\frac{1}{x}$

(B) $y=\frac{4 x^{4}}{5}+\frac{4}{5 x}$
(C) $y=\frac{x^{4}}{5}+1$
ค) (D) $y=\frac{x^{5}}{5}+1$

MCQ 1.35 A path AB in the form of one quarter of a circle of unit radius is shown in the figure. Integration of $(x+y)^{2}$ on path $A B$ traversed in a counterclockwise sense is

(A) $\frac{\pi}{2}-1$
(B) $\frac{\pi}{2}+1$
(C) $\frac{\pi}{2}$
(D) 1

MCQ 1.36 The distance between the origin and the point nearest to it on the surface $z^{2}=1+x y$ is
GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY
ISBN: 9788192276250
(A) 1
(B) $\frac{\sqrt{3}}{2}$
(C) $\sqrt{3}$
(D) 2

MCQ 1.37 The area enclosed between the curves $y^{2}=4 x$ and $x^{2}=4 y$ is
(A) $\frac{16}{3}$
(B) 8
(C) $\frac{32}{3}$
(D) 16

MCQ 1.38 The standard deviation of a uniformly distributed random variable between 0 and 1 is
(A) $\frac{1}{\sqrt{12}}$
(B) $\frac{1}{\sqrt{3}}$
(C) $\frac{5}{\sqrt{12}}$
(D) $\frac{7}{\sqrt{12}}$

YEAR 2008
MCQ 1.39 In the Taylor series expansion of e^{x} about $x=2$, the coefficient of $(x-2)^{4}$ is
(A) $1 / 4$!
(B) $2^{4} / 4$!
(C) $e^{2} / 4$!
(D) $e^{4} / 4$!

MCQ 1.40 Given that $\ddot{x}+3 x=0$, and $x(0) \cong 1, \dot{x}(0)=0$, what is $x(1)$?
(A) -0.99
(B) -0.16
(C) 0.16
(D) 0.99

MCQ 1.41 The value of $\lim _{x \rightarrow 8} \frac{x^{1 / 3}-2}{(x-8)}$
(A) $\frac{1}{16}$
(B) $\frac{1}{12}$
(C) $\frac{1}{8}$
(D) $\frac{1}{4}$

MCQ 1.42 A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
(A) $\frac{1}{4}$
(B) $\frac{3}{8}$
(C) $\frac{1}{2}$
(D) $\frac{3}{4}$

MCQ 1.43 The matrix $\left[\begin{array}{lll}1 & 2 & 4 \\ 3 & 0 & 6 \\ 1 & 1 & p\end{array}\right]$ has one eigen value equal to 3 . The sum of the other two eigen value is
(A) p
(B) $p-1$
(C) $p-2$
(D) $p-3$

GATE Previous Year Solved Paper For Mechanical Engineering

MCQ 1.44 The divergence of the vector field $(x-y) \boldsymbol{i}+(y-x) \boldsymbol{j}+(x+y+z) \boldsymbol{k}$ is
(A) 0
(B) 1
(C) 2
(D) 3

YEAR 2008
TWO MARKS
MCQ 1.45 Consider the shaded triangular region P shown in the figure. What is $\iint_{P} x y d x d y$?

(A) $\frac{1}{6}$
(B) $\frac{2}{9}$
(C) $\frac{7}{16}$
(D) 1

MCQ 1.46 The directional derivative of the scalar function $f(x, y, z)=x^{2}+2 y^{2}+z$ at the point
$P=(1,1,2)$ in the direction of the vector $\boldsymbol{a}=3 \boldsymbol{i}-4 \boldsymbol{j}$ is
(A) -4
(B) -2
(C) -1
(D) 1

MCQ 1.47 For what value of a, if any will the following system of equation in x, y and z have a solution?

$$
\begin{aligned}
& 2 x+3 y=4 \\
& x+y+z=4 \\
& 3 x+2 y-z=a
\end{aligned}
$$

(A) Any real number
(B) 0
(C) 1
(D) There is no such value

MCQ 1.48 Which of the following integrals is unbounded?
(A) $\int_{0}^{\pi / 4} \tan x d x$
(B) $\int_{0}^{\infty} \frac{1}{x^{2}+1} d x$
(C) $\int_{0}^{\infty} x e^{-x} d x$
(D) $\int_{0}^{1} \frac{1}{1-x} d x$

MCQ 1.49 The integral $\oint f(z) d z$ evaluated around the unit circle on the complex plane
for $f(z)=\frac{\cos z}{z}$ is
(A) $2 \pi i$
(B) $4 \pi i$
(C) $-2 \pi i$
(D) 0

MCQ 1.50 The length of the curve $y=\frac{2}{3} x^{3 / 2}$ between $x=0$ and $x=1$ is
(A) 0.27
(B) 0.67
(C) 1
(D) 1.22

MCQ 1.51 The eigen vector of the matrix $\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]$ are written in the form $\left[\begin{array}{l}1 \\ a\end{array}\right]$ and $\left[\begin{array}{l}1 \\ b\end{array}\right]$.
What is $a+b$?
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 2

MCQ 1.52 Let $f=y^{x}$. What is $\frac{\partial^{2} f}{\partial x \partial y}$ at $x=2, y=1$?
(A) 0
(B) $\ln 2$
(C) 1
(D) $\frac{1}{\ln 2}$

MCQ 1.53 It is given that $y^{\prime \prime}+2 y^{\prime}+y=0, y(0)=0, y(1)=0$. What is $y(0.5)$?
(A) 0
(C) 0.62
(B) 0.37
(D) 1.13

YEAR 2007
ONE MARK
MCQ 1.54 The minimum value of function $y=x^{2}$ in the interval $[1,5]$ is
(A) 0
(B) 1
(C) 25
(D) undefined

MCQ 1.55 If a square matrix A is real and symmetric, then the eigen values
(A) are always real
(B) are always real and positive
(C) are always real and non-negative
(D) occur in complex conjugate pairs

MCQ 1.56 If $\varphi(x, y)$ and $\psi(x, y)$ are functions with continuous second derivatives, then $\varphi(x, y)+i \psi(x, y)$ can be expressed as an analytic function of $x+i \psi(i=\sqrt{-1})$, when
(A) $\frac{\partial \varphi}{\partial x}=-\frac{\partial \psi}{\partial x}, \frac{\partial \varphi}{\partial y}=\frac{\partial \psi}{\partial y}$
(B) $\frac{\partial \varphi}{\partial y}=-\frac{\partial \psi}{\partial x}, \frac{\partial \varphi}{\partial x}=\frac{\partial \psi}{\partial y}$
(C) $\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=1$
(D) $\frac{\partial \varphi}{\partial x}+\frac{\partial \varphi}{\partial y}=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y}=0$

GATE Previous Year Solved Paper For Mechanical Engineering

MCQ 1.57 The partial differential equation $\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}+\frac{\partial \varphi}{\partial x}+\frac{\partial \varphi}{\partial y}=0$ has
(A) degree 1 order 2
(B) degree 1 order 1
(C) degree 2 order 1
(D) degree 2 order 2

YEAR 2007
TWO MARKS
MCQ 1.58 If $y=x+\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \infty}}}$, then $y(2)=$
(A) 4 or 1
(B) 4 only
(C) 1 only
(D) undefined

MCQ 1.59 The area of a triangle formed by the tips of vectors \bar{a}, \bar{b} and \bar{c} is
(A) $\frac{1}{2}(\boldsymbol{a}-\boldsymbol{b}) \cdot(\boldsymbol{a}-\boldsymbol{c})$
(B) $\frac{1}{2}|(\boldsymbol{a}-\boldsymbol{b}) \times(\boldsymbol{a}-\boldsymbol{c})|$
(C) $\frac{1}{2}|\boldsymbol{a} \times \boldsymbol{b} \times \boldsymbol{c}|$
(D) $\frac{1}{2}(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}$

MCQ 1.60 The solution of $\frac{d y}{d x}=y^{2}$ with initial value $y(0)=1$ bounded in the interval
(A) $-\infty \leq x \leq \infty$
(B) $-\infty \leq x \leq 1$
(C) $x<1, x>1$
(D) $-2 \leq x \leq 2$

MCQ 1.61 If $F(s)$ is the Laplacetransform of function $f(t)$, then Laplace transform of $\int_{0}^{t} f(\tau) d \tau$ is
(A) $\frac{1}{s} F(s)$
(B) $\frac{1}{s} F(s)-f(0)$
(C) $s F(s)-f(0)$
(D) $\int F(s) d s$

MCQ 1.62 A calculator has accuracy up to 8 digits after decimal place. The value of $\int_{0}^{2 \pi} \sin x d x$
when evaluated using the calculator by trapezoidal method with 8 equal intervals, to 5 significant digits is
(A) 0.00000
(B) 1.0000
(C) 0.00500
(D) 0.00025

MCQ 1.63 Let X and Y be two independent random variables. Which one of the relations between expectation (E), variance (Var) and covariance (Cov) given below is FALSE ?
(A) $E(X Y)=E(X) E(Y)$
(B) $\operatorname{Cov}(X, Y)=0$
(C) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$
(D) $E\left(X^{2} Y^{2}\right)=(E(X))^{2}(E(Y))^{2}$

GATE Previous Year Solved Paper For Mechanical Engineering

MCQ $1.64 \quad \lim _{x \rightarrow 0} \frac{e^{x}-\left(1+x+\frac{x^{2}}{2}\right)}{x^{3}}=$
(A) 0
(B) $1 / 6$
(C) $1 / 3$
(D) 1

MCQ 1.65 $\begin{aligned} & \text { The number of linearly independent eigen vectors of }\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right] \text { is } \\ & \begin{array}{ll}\text { (A) } 0 & \text { (B) } 1\end{array}\end{aligned}$
(C) 2
(D) infinite

YEAR 2006

ONE MARK
MCQ 1.66 Match the items in column I and II.

Column I

P. Gauss-Seidel method
Q. Forward Newton-Gauss method
R. Runge-Kutta method
S. Trapezoidal Rule
(A) P-1, Q-4, R-3, S-2
(C) P-1. Q-3, R-2, S-4

Column II

1. Interpolation
2. Non-linear differential equations
3. Numerical integration
4. Linear algebraic equations
(B) P-1, Q-4, R-2, S-3
(D) P-4, Q-1, R-2, S-3

MCQ 1.67 The solution of the differential equation $\frac{d y}{d x}+2 x y=e^{-x^{2}}$ with $y(0)=1$ is
(A) $(1+x) e^{+x^{2}}$
(B) $(1+x) e^{-x^{2}}$
(C) $(1-x) e^{+x^{2}}$
(D) $(1-x) e^{-x^{2}}$

MCQ 1.68 Let x denote a real number. Find out the INCORRECT statement.
(A) $S=\{x: x>3\}$ represents the set of all real numbers greater than 3
(B) $S=\left\{x: x^{2}<0\right\}$ represents the empty set.
(C) $S=\{x: x \in A$ and $x \in B\}$ represents the union of set A and set B.
(D) $S=\{x: a<x<b\}$ represents the set of all real numbers between a and b, where a and b are real numbers.

MCQ 1.69 A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective ?
(A) $\frac{1}{5}$
(B) $\frac{1}{25}$
(C) $\frac{20}{99}$
(D) $\frac{19}{495}$

GATE Previous Year Solved Paper For Mechanical Engineering

YEAR 2006

TWO MARKS
MCQ 1.70 Eigen values of a matrix $S=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$ are 5 and 1 . What are the eigen values of the matrix $S^{2}=S S$?
(A) 1 and 25
(B) 6 and 4
(C) 5 and 1
(D) 2 and 10

MCQ 1.71 Equation of the line normal to function $f(x)=(x-8)^{2 / 3}+1$ at $P(0,5)$ is
(A) $y=3 x-5$
(B) $y=3 x+5$
(C) $3 y=x+15$
(D) $3 y=x-15$

MCQ 1.72 Assuming $i=\sqrt{-1}$ and t is a real number, $\int_{0}^{\pi / 3} e^{i t} d t$ is
(A) $\frac{\sqrt{3}}{2}+i \frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}-i \frac{1}{2}$
(C) $\frac{1}{2}+i \frac{\sqrt{3}}{2}$
(D) $\frac{1}{2}+i\left(1-\frac{\sqrt{3}}{2}\right)$

MCQ 1.73 If $f(x)=\frac{2 x^{2}-7 x+3}{5 x^{2}-12 x-9}$, then $\lim _{x \rightarrow 3} f(x)$ will be
(A) $-1 / 3$
(B) $5 / 18$
(C) 0

(D) $2 / 5$

MCQ 1.74 Match the items in column I and I_{E}

Column I

P. Singular matrix
Q. Non-square matrix
R. Real symmetric
S. Orthogonal matrix

Column II

1. Determinant is not defined
2. Determinant is always one
3. Determinant is zero
4. Eigenvalues are always real
5. Eigenvalues are not defined
(A) P-3, Q-1, R-4, S-2
(B) P-2, Q-3, R-4, S-1
(C) P-3, Q-2, R-5, S-4
(D) P-3, Q-4, R-2, S-1

MCQ 1.75 For $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=3 e^{2 x}$, the particular integral is
(A) $\frac{1}{15} e^{2 x}$
(B) $\frac{1}{5} e^{2 x}$
(C) $3 e^{2 x}$
(D) $C_{1} e^{-x}+C_{2} e^{-3 x}$

GATE Previous Year Solved Paper For Mechanical Engineering

MCQ 1.76 Multiplication of matrices E and F is G. matrices E and G are

$$
E=\left[\begin{array}{rrr}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } G=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

What is the matrix F ?
(A) $\left[\begin{array}{rrr}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
(B) $\left[\begin{array}{rrr}\cos \theta & \cos \theta & 0 \\ -\cos \theta & \sin \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{rrr}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{rrr}\sin \theta & -\cos \theta & 0 \\ \cos \theta & \sin \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

MCQ 1.77 Consider the continuous random variable with probability density function

$$
\begin{aligned}
f(t) & =1+t \text { for }-1 \leq t \leq 0 \\
& =1-t \text { for } 0 \leq t \leq 1
\end{aligned}
$$

The standard deviation of the random variable is
(A) $\frac{1}{\sqrt{3}}$
(B) $\frac{1}{\sqrt{6}}$
(C) $\frac{1}{3}$
(D) $\frac{1}{6}$
п ล \uparrow ค
YEAR 2005

ONE MARK
MCQ 1.78 Stokes theorem connects
(A) a line integral and a surface integral
(B) a surface integral and a volume integral
(C) a line integral and a volume integral
(D) gradient of a function and its surface integral

MCQ 1.79 A lot has 10% defective items. Ten items are chosen randomly from this lot. The probability that exactly 2 of the chosen items are defective is
(A) 0.0036
(B) 0.1937
(C) 0.2234
(D) 0.3874

MCQ $1.80 \quad \int_{-a}^{a}\left(\sin ^{6} x+\sin ^{7} x\right) d x$ is equal to
(A) $2 \int_{0}^{a} \sin ^{6} x d x$
(B) $2 \int_{0}^{a} \sin ^{7} x d x$
(C) $2 \int_{0}^{a}\left(\sin ^{6} x+\sin ^{7} x\right) d x$
(D) zero

GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY

MCQ 1.81 A is a 3×4 real matrix and $A x=b$ is an inconsistent system of equations. The highest possible rank of A is
(A) 1
(B) 2
(C) 3
(D) 4

MCQ 1.82 Changing theorder of theintegrationin the doubleintegral $I=\int_{0}^{8} \int_{\frac{x}{4}}^{2} f(x, y) d y d x$ leads to $I=\int_{r}^{s} \int_{p}^{q} f(x, y) d x d y$ What is q ?
(A) $4 y$
(B) $16 y^{2}$
(C) x
(D) 8

YEAR 2005
TWO MARKS
MCQ 1.83 Which one of the following is an eigen vector of the matrix
(A) $\left[\begin{array}{r}1 \\ -2 \\ 0 \\ 0\end{array}\right]$ $\left[\begin{array}{llll}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 1\end{array}\right]$
$\square 0$

(B)
$\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$
(D) $\left[\begin{array}{r}1 \\ -1 \\ 2 \\ 1\end{array}\right]$

MCQ 1.84 With a 1 unit change in b, what is the change in x in the solution of the system of equations $x+y=2,1.01 x+0.99 y=b$?
(A) zero
(B) 2 units
(C) 50 units
(D) 100 units

MCQ 1.85 By a change of variable $x(u, v)=u v, y(u, v)=v / u$ is double integral, the integrand $f(x, y)$ changes to $f(u v, v / u) \phi(u, v)$. Then, $\phi(u, v)$ is
(A) $2 v / u$
(B) $2 u v$
(C) v^{2}
(D) 1

MCQ 1.86 The right circular cone of largest volume that can be enclosed by a sphere of 1 m radius has a height of
(A) $1 / 3 \mathrm{~m}$
(B) $2 / 3 \mathrm{~m}$
(C) $\frac{2 \sqrt{2}}{3} \mathrm{~m}$
(D) $4 / 3 \mathrm{~m}$

GATE Previous Year Solved Paper For Mechanical Engineering

MCQ 1．87 If $x^{2} \frac{d y}{d x}+2 x y=\frac{2 \ln (x)}{x}$ and $y(1)=0$ ，then what is $y(e)$ ？
（A）e
（B） 1
（C） $1 / e$
（D） $1 / e^{2}$

MCQ 1．88 The line integral $\int \boldsymbol{V} \cdot d \boldsymbol{r}$ of the vector $\boldsymbol{V} \cdot(\boldsymbol{r})=2 x y z \boldsymbol{i}+x^{2} z \boldsymbol{j}+x^{2} y \boldsymbol{k}$ from the origin to the point $\mathrm{P}(1,1,1)$
（A）is 1
（B）is zero
（C）is－ 1
（D）cannot be determined without specifying the path
MCQ 1．89 Starting from $x_{0}=1$ ，one step of Newton－Raphson method in solving the equation $x^{3}+3 x-7=0$ gives the next value $\left(x_{1}\right)$ as
（A）$x_{1}=0.5$
（B）$x_{1}=1.406$
（C）$x_{1}=1.5$
（D）$x_{1}=2$

MCQ 1．90 A single die is thrown twice．What is the probability that the sum is neither 8 nor 9 ？
（A） $1 / 9$
（B） $5 / 36$
（C） $1 / 4$
\because ローロ
（D） $3 / 4$

－Common Data For Q． 91 and 92

The complete solution of the ordinary differential equation

$$
\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+q y=0 \text { is } y=c_{1} e^{-x}+c_{2} e^{-3 x}
$$

MCQ 1．91 Then p and q are
（A）$p=3, q=3$
（B）$p=3, q=4$
（C）$p=4, q=3$
（D）$p=4, q=4$

MCQ 1．92 Which of the following is a solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+(q+1) y=0
$$

（A）$e^{-3 x}$
（B）$x e^{-x}$
（C）$x e^{-2 x}$
（D）$x^{2} e^{-2 x}$

YEAR 2004
MCQ 1．93 If $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$ ，then $\frac{d y}{d x}$ will be equal to
GATE Previous Year Solved Paper For Mechanical Engineering
(A) $\sin \left(\frac{\theta}{2}\right)$
(B) $\cos \left(\frac{\theta}{2}\right)$
(C) $\tan \left(\frac{\theta}{2}\right)$
(D) $\cot \left(\frac{\theta}{2}\right)$

MCQ 1.94 The angle between two unit-magnitude coplanar vectors $P(0.866,0.500,0)$ and $Q(0.259,0.966,0)$ will be
(A) 0°
(B) 30°
(C) 45°
(D) 60°

MCQ 1.95 The sum of the eigen values of the matrix given below is $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$
(A) 5
(B) 7
(C) 9
(D) 18

YEAR 2004
MCQ 1.96 From a pack of regular playing cards, two cards are drawn at random. What is the probability that both cards will be Kings, if first card in NOT replaced?
(A) $\frac{1}{26}$
gate
(B) $\frac{1}{52}$
(C) $\frac{1}{169}$
help
(D) $\frac{1}{221}$

MCQ 1.97 A delayed unit step function is defined as $U(t-a)=\left\{\begin{array}{l}0, \text { for } t<a \\ 1, \text { for } t \geq a \\ \text { transform is }\end{array}\right.$ Its Laplace
(A) $a e^{-a s}$
(B) $\frac{e^{-a s}}{s}$
(C) $\frac{e^{a s}}{s}$
(D) $\frac{e^{a s}}{a}$

MCQ 1.98 The values of a function $f(x)$ are tabulated below

x	$f(x)$
0	1
1	2
2	1
3	10

Using Newton's forward difference formula, the cubic polynomial that can be fitted to the above data, is
GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY ISBN: 9788192276250
Visit us at: www.nodia.co.in
(A) $2 x^{3}+7 x^{2}-6 x+2$
(B) $2 x^{3}-7 x^{2}+6 x-2$
(C) $x^{3}-7 x^{2}-6 x^{2}+1$
(D) $2 x^{3}-7 x^{2}+6 x+1$

MCQ 1.99 The volume of an object expressed in spherical co-ordinates is given by

$$
V=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} r^{2} \sin \phi d r d \phi d \theta
$$

The value of the integral is
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{6}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{\pi}{4}$

MCQ 1.100 For which value of x will the matrix given below become singular ?

$$
=\left[\begin{array}{rrr}
8 & x & 0 \\
4 & 0 & 2 \\
12 & 6 & 0
\end{array}\right]
$$

(A) 4
(B) 6
(C) 8
(D) 12

YEAR 2003
ONE MARK
MCQ $1.101 \lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}$ is equal to
(A) 0
(C) 1
(B) ∞
(D) -1

MCQ 1.102 The accuracy of Simpson's rule quadrature for a step size h is
(A) $O\left(h^{2}\right)$
(B) $O\left(h^{3}\right)$
(C) $O\left(h^{4}\right)$
(D) $O\left(h^{5}\right)$

MCQ 1.103 For the matrix $\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]$ the eigen values are
(A) 3 and -3
(B) -3 and -5
(C) 3 and 5
(D) 5 and 0

YEAR 2003
TWO MARKS
MCQ 1.104 Consider the system of simultaneous equations

$$
\begin{array}{r}
x+2 y+z=6 \\
2 x+y+2 z=6 \\
x+y+z=5
\end{array}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

This system has
(A) unique solution
(B) infinite number of solutions
(C) no solution
(D) exactly two solutions

MCQ 1.105 The area enclosed between the parabola $y=x^{2}$ and the straight line $y=x$ is
(A) $1 / 8$
(B) $1 / 6$
(C) $1 / 3$
(D) $1 / 2$

MCQ 1.106 The solution of the differential equation $\frac{d y}{d x}+y^{2}=0$ is
(A) $y=\frac{1}{x+c}$
(B) $y=\frac{-x^{3}}{3}+c$
(C) $c e^{x}$
(D) unsolvable as equation is non-
linear

MCQ 1.107 The vector field is $\boldsymbol{F}=x \boldsymbol{i}-y \boldsymbol{j}$ (where \boldsymbol{i} and \boldsymbol{j} are unit vector) is
(A) divergence free, but not irrotational
(B) irrotational, but not divergence free
(C) divergence free and irrotational
(D) neither divergence free nor ircational

MCQ 1.108 Laplace transform of the function $\sin \omega t$ is
(A) $\frac{s}{s^{2}+\omega^{2}}$
(B) $\frac{\omega}{s^{2}+\omega^{2}}$
(C) $\frac{s}{s^{2}-\omega^{2}}$
(D) $\frac{\omega}{s^{2}-\omega^{2}}$

MCQ 1.109 A box contains 5 black and 5 red balls. Two balls are randomly picked one after another form the box, without replacement. The probability for balls being red is
(A) $1 / 90$
(B) $1 / 2$
(C) $19 / 90$
(D) $2 / 9$

YEAR 2002
MCQ 1.110 Two dice are thrown. What is the probability that the sum of the numbers on the two dice is eight?
(A) $\frac{5}{36}$
(B) $\frac{5}{18}$
(C) $\frac{1}{4}$
(D) $\frac{1}{3}$

GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY
ISBN: 9788192276250

MCQ 1.111 Which of the following functions is not differentiable in the domain $[-1,1]$?
(A) $f(x)=x^{2}$
(B) $f(x)=x-1$
(C) $f(x)=2$
(D) $f(x)=$ maximum $(x,-x)$

MCQ 1.112 A regression model is used to express a variable Y as a function of another variable X.This implies that
(A) there is a causal relationship between Y and X
(B) a value of X may be used to estimate a value of Y
(C) values of X exactly determine values of Y
(D) there is no causal relationship between Y and X

YEAR 2002
TWO MARKS
MCQ 1.113 The following set of equations has

$$
\begin{array}{r}
3 x+2 y+z=4 \\
x-y+z=2 \\
-2 x+2 z=5
\end{array}
$$

(A) no solution
(C) multiple solutions
(B) a unique solution
(D) an inconsistency

MCQ 1.114 The function $f(x, y)=2 x^{2}+2 x y-y^{3}$ has
(A) only one stationary point at $(0,0)$
(B) two stationary points at $(0,0)$ and $\left(\frac{1}{6}, \frac{-1}{3}\right)$
(C) two stationary points at $(0,0)$ and $(1,-1)$
(D) no stationary point

MCQ 1.115 Manish has to travel from A to D changing buses at stops B and C enroute. The maximum waiting time at either stop can be 8 min each but any time of waiting up to 8 min is equally, likely at both places. He can afford up to 13 min of total waiting time if he is to arrive at D on time. What is the probability that Manish will arrive late at D ?
(A) $\frac{8}{13}$
(B) $\frac{13}{64}$
(C) $\frac{119}{128}$
(D) $\frac{9}{128}$

YEAR 2001
ONE MARK
MCQ 1.116 The divergence of vector $\boldsymbol{i}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$ is
(A) $\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}$
(B) 3
(C) 0
(D) 1

GATE Previous Year Solved Paper For Mechanical Engineering

MCQ 1.117 Consider the system of equations given below

$$
\begin{array}{r}
x+y=2 \\
2 x+2 y=5
\end{array}
$$

This system has
(A) one solution
(B) no solution
(C) infinite solutions
(D) four solutions

MCQ 1.118 What is the derivative of $f(x)=|x|$ at $x=0$?
(A) 1
(B) -1
(C) 0
(D) Does not exist

MCQ 1.119 The Gauss divergence theorem relates certain
(A) surface integrals to volume integrals
(B) surface integrals to line integrals
(C) vector quantities to other vector quantities
(D) line integrals to volume integrals

YEAR 2001
TWO MARKS
MCQ 1.120 The minimum point of the function $f(x)=\left(\frac{x^{3}}{3}\right)-x$ is at
(A) $x=1$
(B) $x=-1$
(C) $x=0$
ค日 (D) $x=\frac{1}{\sqrt{3}}$

MCQ 1.121 The rank of a 3×3 matrix $C(=A B)$, found by multiplying a non-zero column matrix A of size 3×1 and a non-zero row matrix B of size 1×3, is
(A) 0
(B) 1
(C) 2
(D) 3

MCQ 1.122 An unbiased coin is tossed three times. The probability that the head turns up in exactly two cases is
(A) $\frac{1}{9}$
(B) $\frac{1}{8}$
(C) $\frac{2}{3}$
(D) $\frac{3}{8}$

SOLUTION

SOL 1.1 Option (A) is correct.
For $\quad y=x$ straight line and
$y=x^{2}$ parabola, curve is as given. The shaded region is the area, which is bounded by the both curves (common area).

We solve given equation as follows to gett the intersection points :
In $y=x^{2}$ putting $y=x$ we have $x=x^{2}$ or

$$
x^{2}-x=0 \Rightarrow x(x-1)=0 \Rightarrow x=0,1
$$

$x-x=0 \Rightarrow x(x-1)=0 \Rightarrow x=0,1$
Then from $y=x$, for $a_{x=0} \Rightarrow y=0$ and $x=1 \Rightarrow y=1$
Curve $y=x^{2}$ and $y=x$ intersects at point $(0,0)$ and $(1,1)$
So, the area bounded by both the curves is

$$
\begin{aligned}
A & =\int_{x=0}^{x=1} \int_{y=x}^{y=x^{2}} d y d x=\int_{x=0}^{x=1} d x \int_{y=x}^{y=x^{2}} d y=\int_{x=0}^{x=1} d x[y]_{x}^{x^{2}}=\int_{x=0}^{x=1}\left(x^{2}-x\right) d x \\
& =\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}=\frac{1}{6} \text { unit }^{2} \quad \text { Area is never negative }
\end{aligned}
$$

SOL 1.2 Option (C) is correct.
Given $f(x)=|x|($ in $-1 \leq x \leq 1)$
For this function the plot is as given below.

GATE Previous Year Solved Paper For Mechanical Engineering

At $x=0$, function is continuous but not differentiable because.
For

$$
\begin{aligned}
x & >0 \text { and } x<0 \\
f^{\prime}(x) & =1 \text { and } f^{\prime}(x)=-1 \\
\lim _{x \rightarrow 0^{+}} f^{\prime}(x) & =1 \text { and } \lim _{x \rightarrow 0^{-}} f^{\prime}(x)=-1
\end{aligned}
$$

R.H.S $\lim =1$ and L.H.S $\lim =-1$

Therefore it is not differentiable.

SOL 1.3 Option (B) is correct.
Let

$$
y=\lim _{x \rightarrow 0} \frac{(1-\cos x)}{x^{2}}
$$

It forms $\left[\frac{0}{0}\right]$ condition. Hence by L-Hospital rule

$$
y=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(1-\cos x)}{\frac{d}{d x}\left(x^{2}\right)}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}
$$

Still these gives $\left[\frac{0}{0}\right]$ condition, so again applying L-Hospital rule

$$
y=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin x)}{2 \times \frac{d}{d x}(x)}=\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{\cos 0}{2}=\frac{1}{2}
$$

SOL 1.4 Option (D) is correct.
We have

$$
\begin{aligned}
f(x) & =x^{3}+1 \\
f^{\prime}(x) & =3 x^{2}+0
\end{aligned}
$$

Putting $f^{\prime}(x)$ equal to zero

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
3 x^{2}+0 & =0 \Rightarrow x=0 \\
f^{\prime \prime}(x) & =6 x
\end{aligned}
$$

Now
At $x=0, \quad f^{\prime \prime}(0)=6 \times 0=0 \quad$ Hence $x=0$ is the point of inflection.

SOL 1.5 Option (A) is correct.
Given : $\quad x^{2}+y^{2}+z^{2}=1$
This is a equation of sphere with radius $r=1$

GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY

The unit normal vector at point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is $\boldsymbol{O A}$
Hence

$$
\boldsymbol{O} \boldsymbol{A}=\left(\frac{1}{\sqrt{2}}-0\right) \boldsymbol{i}+\left(\frac{1}{\sqrt{2}}-0\right) \boldsymbol{j}+(0-0) \boldsymbol{k}=\frac{1}{\sqrt{2}} \boldsymbol{i}+\frac{1}{\sqrt{2}} \boldsymbol{j}
$$

SOL 1.6 Option (D) is correct.
First using the partial fraction :

$$
\begin{aligned}
F(s) & =\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1}=\frac{A(s+1)+B s}{s(s+1)} \\
\frac{1}{s(s+1)} & =\frac{(A+B) s}{s(s+1)}+\frac{A}{s(s+1)}
\end{aligned}
$$

Comparing the coefficients both the sides,

$$
(A+B)=0 \text { and } A=1, B=-1
$$

So $\quad \frac{1}{s(s+1)}=\frac{1}{s}-\frac{1}{s+1}$

$$
\begin{aligned}
F(t) & =L^{-1}[F(s)] \\
& =L^{-1}\left[\frac{1}{s(s+1)}\right]=L^{-1}\left[\frac{1}{s}-\frac{1}{s+1}\right]=L^{-1}\left[\frac{1}{s}\right]-L^{-1}\left[\frac{1}{s+1}\right]
\end{aligned}
$$

$$
=1-e^{-t}
$$

SOL 1.7 Option (B) is correct.
Given

For finding eigen values, we write the characteristic equation as

Now from characteristic equation for eigen vector.

$$
[\boldsymbol{A}-\lambda \boldsymbol{I}]\{x\}=[0]
$$

For $\lambda=2$

$$
\begin{aligned}
{\left[\begin{array}{rr}
5-2 & 3 \\
1 & 3-2
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow \quad\left[\begin{array}{ll}
3 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
X_{1}+X_{2} & =0 \quad \Rightarrow X_{1}=-X_{2}
\end{aligned}
$$

So

$$
\text { eigen vector }=\left\{\begin{array}{r}
1 \\
-1
\end{array}\right\}
$$

Magnitude of eigen vector $=\sqrt{(1)^{2}+(1)^{2}}=\sqrt{2}$
GATE Previous Year Solved Paper For Mechanical Engineering

$$
\begin{aligned}
& \left.\begin{array}{rl}
\mid \boldsymbol{A}-\lambda \boldsymbol{I} \\
\lambda & 3 \\
1 & 3-\lambda
\end{array} \right\rvert\,=0 \\
& \Rightarrow \quad(5-\lambda)(3-\lambda)-3=0 \\
& \lambda^{2}-8 \lambda+12=0 \Rightarrow \lambda=2,6
\end{aligned}
$$

Normalized eigen vector $=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}}\end{array}\right]$
SOL 1.8 Option (D) is correct.
Given : \quad No. of Red balls $=4$
No. of Black ball $=6$
3 balls are selected randomly one after another, without replacement.
1 red and 2 black balls are will be selected as following

Manners	Probability for these sequence
$R B B$	$\frac{4}{10} \times \frac{6}{9} \times \frac{5}{8}=\frac{1}{6}$
$B R B$	$\frac{6}{10} \times \frac{4}{9} \times \frac{5}{8}=\frac{1}{6}$
$B B R$	$\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}=\frac{1}{6}$

Hence Total probability of selecting 1 red and 2 black ball is

$$
P=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}
$$

SOL 1.9 Option (A) is correct.
We have

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-4 y=0 \tag{1}
\end{equation*}
$$

Let $x=e^{z}$ then $\quad z=\log x$

$$
\frac{d z}{d x}=\frac{1}{x}
$$

So, we get

$$
\frac{d y}{d x}=\left(\frac{d y}{d z}\right)\left(\frac{d z}{d x}\right)=\frac{1}{x} \frac{d y}{d z}
$$

$$
x \frac{d y}{d x}=D y
$$

where $\frac{d}{d z}=D$
Again

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(\frac{1}{x} \frac{d y}{d z}\right)=\frac{-1}{x^{2}} \frac{d y}{d z}+\frac{1}{x} \frac{d}{d z}\left(\frac{d y}{d z}\right) \frac{d z}{d x} \\
& =\frac{-1}{x^{2}} \frac{d y}{d z}+\frac{1}{x} \frac{d^{2} y}{d z^{2}} \frac{d z}{d x}=\frac{1}{x^{2}}\left(\frac{d^{2} y}{d z^{2}}-\frac{d y}{d z}\right) \\
\frac{x^{2} d^{2} y}{d x^{2}} & =\left(D^{2}-D\right) y=D(D-1) y
\end{aligned}
$$

Now substitute in equation (i)

$$
\begin{aligned}
{[D(D-1)+D-4] y } & =0 \\
\left(D^{2}-4\right) y & =0 \Rightarrow D= \pm 2
\end{aligned}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

So the required solution is

$$
\begin{align*}
y & =C_{1} x^{2}+C_{2} x^{-2} \tag{ii}\\
y(0) & =0, \text { equation (ii) gives } \\
0 & =C_{1} \times 0+C_{2} \\
C_{2} & =0
\end{align*}
$$

From the given limits

And from $y(1)=1$, equation (ii) gives

$$
\begin{aligned}
1 & =C_{1}+C_{2} \\
C_{1} & =1
\end{aligned}
$$

Substitute $C_{1} \& C_{2}$ in equation (ii), the required solution be

$$
y=x^{2}
$$

SOL 1.10
Option (C) is correct.
For given equation matrix form is as follows

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
1 & 2 & 1 \\
2 & 1 & 2 \\
1 & -1 & 1
\end{array}\right], \boldsymbol{B}=\left[\begin{array}{l}
4 \\
5 \\
1
\end{array}\right]
$$

The augmented matrix is

$$
\begin{aligned}
{[\boldsymbol{A}: \boldsymbol{B}] } & =\left[\begin{array}{lllll}
1 & 2 & 1 & : & 4 \\
2 & 1 & 2 & : & 5 \\
1 & -1 & 1 & : & 1
\end{array}\right] \\
& \sim\left[\begin{array}{rrrr}
1 & 2 & 1 & : \\
0 & 3 & 0 & 4 \\
0 & 3 & -3 \\
0 & -3 & 0 & : \\
\hline
\end{array}\right. \\
& \sim\left[\begin{array}{rrrr}
1 & 2 & 1 & -3 \\
0 & -3 & 0 & : \\
0 & 0 & 0 & : \\
0
\end{array}\right] \\
& \sim\left[\begin{array}{llll}
1 & 2 & 1 & : \\
0 & 1 & 0 & : \\
0 \\
0 & 0 & 0 & : \\
0
\end{array}\right]
\end{aligned}
$$

This gives rank of $\boldsymbol{A}, \rho(A)=2$ and Rank of $[\boldsymbol{A}: \boldsymbol{B}]=\rho[\boldsymbol{A}: \boldsymbol{B}]=2$ Which is less than the number of unknowns (3)

$$
\rho[\boldsymbol{A}]=\rho[\boldsymbol{A}: \boldsymbol{B}]=2<3
$$

Hence, this gives infinite No. of solutions.

SOL 1.11 Option (B) is correct.

$$
\sin \theta=\theta-\frac{\theta^{3}}{\boxed{3}}+\frac{\theta^{5}}{\boxed{5}}-\frac{\theta^{7}}{\boxed{7}}+\ldots \ldots
$$

SOL 1.12 Option (D) is correct.

GATE Previous Year Solved Paper For Mechanical Engineering

Let

$$
\begin{aligned}
y & =\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \\
& =\lim _{\theta \rightarrow 0} \frac{\frac{d}{d \theta}(\sin \theta)}{\frac{d}{d \theta}(\theta)}=\lim _{\theta \rightarrow 0} \frac{\cos \theta}{1} \quad \text { Applying L-Hospital rule } \\
& =\frac{\cos 0}{1}=1
\end{aligned}
$$

SOL 1.13 Option (C) is correct
Let a square matrix

$$
A=\left[\begin{array}{ll}
x & y \\
y & x
\end{array}\right]
$$

We know that the characteristic equation for the eigen values is given by

$$
\begin{array}{rl}
|A-\lambda I| & =0 \\
\mid x-\lambda & y \\
y & x-\lambda
\end{array} \left\lvert\,=0 \quad \begin{aligned}
\mid x-\lambda)^{2}-y^{2} & =0 \\
(x-\lambda)^{2} & =y^{2} \\
x-\lambda & = \pm y \Rightarrow \lambda=x \pm y
\end{aligned}\right.
$$

So, eigen values are real if matrix is real and symmetric.

SOL 1.14
$\operatorname{Option}(\mathrm{A})$ is correct.

$$
\text { Let, } \begin{aligned}
z_{1}=(1+i), z_{2}= & (2-5 i) \\
z & =z_{1} \times z_{2}=(1+i)(2-5 i) \\
& =2-5 i+2 i-5 i^{2}=2-3 i+5=7-3 i \quad i^{2}=-1
\end{aligned}
$$

SOL 1.15 Option (D) is correct.
For a function, whose limits bounded between $-a$ to a and a is a positive real number. The solution is given by

$$
\int_{-a}^{a} f(x) d x=\left\{\begin{array}{ll}
2 \int_{0}^{a} f(x) d x ; & f(x) \text { is even } \\
0 & ;
\end{array} f(x)\right. \text { is odd }
$$

SOL 1.16 Option (C) is correct.
Let,

$$
f(x)=\int_{1}^{3} \frac{1}{x} d x
$$

From this function we get $a=1, b=3$ and $n=3-1=2$
So, $\quad h=\frac{b-a}{n}=\frac{3-1}{2}=1$
We make the table from the given function $y=f(x)=\frac{1}{x}$ as follows :
GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{y}=\frac{\mathbf{1}}{\boldsymbol{x}}$
$x=1$	$y_{1}=\frac{1}{1}=1$
$x=2$	$y_{2}=\frac{1}{2}=0.5$
$x=3$	$y_{3}=\frac{1}{3}=0.333$

Applying the Simpson's $1 / 3^{\text {rd }}$ formula

$$
\begin{aligned}
\int_{1}^{3} \frac{1}{x} d x & =\frac{h}{3}\left[\left(y_{1}+y_{3}\right)+4 y_{2}\right]=\frac{1}{3}[(1+0.333)+4 \times 0.5] \\
& =\frac{1}{3}[1.333+2]=\frac{3.333}{3}=1.111
\end{aligned}
$$

SOL 1.17 Option (D) is correct.
Given :

$$
\begin{aligned}
\frac{d y}{d x} & =\left(1+y^{2}\right) x \\
\frac{d y}{\left(1+y^{2}\right)} & =x d x
\end{aligned}
$$

Integrating both the sides, we get

$$
\begin{aligned}
\int \frac{d y}{1+y^{2}} & =\int x d x \\
\tan ^{-1} y & =\frac{x^{2}}{2}+c \Rightarrow y=\tan \left(\frac{x^{2}}{2}+c\right)
\end{aligned}
$$

SOL 1.18 Option (D) is correct.
The probability of getting head $p=\frac{1}{2}$
And the probability of getting tail $q=1-\frac{1}{2}=\frac{1}{2}$
The probability of getting at least one head is

$$
\begin{aligned}
P(x \geq 1) & =1-{ }^{5} C_{0}(p)^{5}(q)^{0}=1-1 \times\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{0} \\
& =1-\frac{1}{2^{5}}=\frac{31}{32}
\end{aligned}
$$

SOL 1.19 Option (C) is correct.
Given system of equations are,

$$
\begin{array}{r}
2 x_{1}+x_{2}+x_{3}=0 \\
x_{2}-x_{3}=0 \\
x_{1}+x_{2}=0 \tag{iii}
\end{array}
$$

Adding the equation (i) and (ii) we have
GATE Previous Year Solved Paper For Mechanical Engineering

$$
\begin{align*}
2 x_{1}+2 x_{2} & =0 \\
x_{1}+x_{2} & =0 \tag{iv}
\end{align*}
$$

We see that the equation (iii) and (iv) is same and they will meet at infinite points. Hence this system of equations have infinite number of solutions.

SOL 1.20 Option (D) is correct.
The volume of a solid generated by revolution about x-axis bounded by the function $f(x)$ and limits between a to b is given by

Given

$$
V=\int_{a}^{b} \pi y^{2} d x
$$

Therefore,

$$
y=\sqrt{x} \text { and } a=1, b=2
$$

$$
V=\int_{1}^{2} \pi(\sqrt{x})^{2} d x=\pi \int_{1}^{2} x d x=\pi\left[\frac{x^{2}}{2}\right]_{1}^{2}=\pi\left[\frac{4}{2}-\frac{1}{2}\right]=\frac{3 \pi}{2}
$$

SOL 1.21 Option (B) is correct.
Given:

$$
\frac{d^{3} f}{d \eta^{3}}+\frac{f}{2} \frac{d^{2} f}{d \eta^{2}}=0
$$

Order is determined by the order of the highest derivation present in it. So, It is third order equation but it is a nonlinear equation because in linear equation, the product of f with $d^{2} f / d \eta^{2}$ is not allow.
Therefore, it is a third order non-linear ordinary differential equation.

SOL 1.22 Option (D) is correct.
Let

$$
\begin{aligned}
I & =\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}} \\
& =\left[\tan ^{-1} x\right]_{-\infty}^{\infty}=\left[\tan ^{-1}(+\infty)-\tan ^{-1}(-\infty)\right] \\
& =\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\pi \quad \tan ^{-1}(-\theta)=-\tan ^{-1}(\theta)
\end{aligned}
$$

SOL 1.23 Option (B) is correct.
Let, $\quad z=\frac{3+4 i}{1-2 i}$
Divide and multiply z by the conjugate of $(1-2 i)$ to convert it in the form of $a+b i$ we have

$$
\begin{aligned}
z & =\frac{3+4 i}{1-2 i} \times \frac{1+2 i}{1+2 i}=\frac{(3+4 i)(1+2 i)}{(1)^{2}-(2 i)^{2}} \\
& =\frac{3+10 i+8 i^{2}}{1-4 i^{2}}=\frac{3+10 i-8}{1-(-4)} \\
& =\frac{-5+10 i}{5}=-1+2 i \\
|z| & =\sqrt{(-1)^{2}+(2)^{2}}=\sqrt{5} \quad|a+i b|=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY
ISBN: 9788192276250

SOL 1.24 Option (C) is correct.

$$
y=f(x)= \begin{cases}2-3 x & \text { if } x<\frac{2}{3} \\ 0 & \text { if } x=\frac{2}{3} \\ -(2-3 x) & \text { if } x>\frac{2}{3}\end{cases}
$$

Checking the continuity of the function.
At $x=\frac{2}{3}, \quad L f(x)=\lim _{h \rightarrow 0} f\left(\frac{2}{3}-h\right)=\lim _{h \rightarrow 0} 2-3\left(\frac{2}{3}-h\right)$

$$
=\lim _{h \rightarrow 0} 2-2+3 h=0
$$

and

$$
R f(x)=\lim _{h \rightarrow 0} f\left(\frac{2}{3}+h\right)=\lim _{h \rightarrow 0} 3\left(\frac{2}{3}+h\right)-2
$$

$$
=\lim _{h \rightarrow 0} 2+3 h-2=0
$$

Since

$$
L \lim _{h \rightarrow 0} f(x)=R \lim _{h \rightarrow 0} f(x)
$$

So, function is continuous $\forall x \in R$
Now checking the differentiability :
and

$$
L f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f\left(\frac{2}{3}-h\right)-f\left(\frac{2}{3}\right)}{-h}=\lim _{h \rightarrow 0} \frac{2-3\left(\frac{2}{3}-h\right)-0}{-h}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{2-2+3 h}{-h}=\lim _{h \rightarrow 0} \frac{3 h}{-h}=-3 \\
R f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f\left(\frac{2}{3}+h\right)-f\left(\frac{2}{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3\left(\frac{2}{3}+h\right)-2-0}{h}=\lim _{h \rightarrow 0} \frac{2+3 h-2}{h}=3
\end{aligned}
$$

Since

$$
L f^{\prime}\left(\frac{2}{3}\right) \neq R f^{\prime}\left(\frac{2}{3}\right), f(x) \text { is not differentiable at } x=\frac{2}{3} .
$$

SOL 1.25 Option (A) is correct.
Let, $\quad A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$
And λ_{1} and λ_{2} are the eigen values of the matrix A.
The characteristic equation is written as

$$
\begin{align*}
|A-\lambda I| & =0 \\
\left|\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right| & =0 \\
\left|\begin{array}{rr}
2-\lambda & 2 \\
1 & 3-\lambda
\end{array}\right| & =0 \tag{i}\\
(2-\lambda)(3-\lambda)-2 & =0 \\
\lambda^{2}-5 \lambda+4 & =0 \Rightarrow \lambda=1 \& 4
\end{align*}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

Putting $\lambda=1$ in equation (i),

$$
\begin{array}{rlrl}
{\left[\begin{array}{rr}
2-1 & 2 \\
1 & 3-1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] & \text { where }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { is eigen vector } \\
{\left[\begin{array}{lr}
1 & 2 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
x_{1}+2 x_{2} & =0 \text { or } x_{1}+2 x_{2}=0
\end{array}
$$

Let

$$
x_{2}=K
$$

Then

$$
x_{1}+2 K=0 \Rightarrow x_{1}=-2 K
$$

So, the eigen vector is

$$
\left[\begin{array}{r}
-2 K \\
K
\end{array}\right] \text { or }\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
$$

Since option A $\left[\begin{array}{r}2 \\ -1\end{array}\right]$ is in the same ratio of x_{1} and x_{2}. Therefore option (A) is an eigen vector.

SOL 1.26 Option (A) is correct. $f(t)$ is the inverse Laplace

So,

$$
\begin{aligned}
f(t) & =\mathcal{L}^{-1}\left[\frac{1}{s^{2}(s+1)}\right] \\
\frac{1}{s^{2}(s+1)} & =\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+1} \\
& =\frac{A s(1+s)+B(s+1)+C s^{2}}{s^{2}(s+1)} \\
& =\frac{s^{2}(A+C)+s(A+B)+B}{s^{2}(s+1)}
\end{aligned}
$$

Compare the coefficients of s^{2}, s and constant terms and we get

$$
A+C=0 ; A+B=0 \text { and } B=1
$$

Solving above equation, we get $A=-1, B=1$ and $C=1$
Thus

$$
\begin{array}{rlr}
f(t) & =\mathcal{L}^{-1}\left[-\frac{1}{s}+\frac{1}{s^{2}}+\frac{1}{s+1}\right] \\
& =-1+t+e^{-t}=t-1+e^{-t} & \mathcal{L}^{-1}\left[\frac{1}{s+a}\right]=e^{-a t}
\end{array}
$$

SOL 1.27 Option (C) is correct.
The box contains :
Number of washers $=2$
Number of nuts $=3$
Number of bolts $=4$

GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY

$$
\text { Total objects }=2+3+4=9
$$

First two washers are drawn from the box which contain 9 items. So the probability of drawing 2 washers is,

$$
P_{1}=\frac{{ }^{2} C_{2}}{{ }^{9} C_{2}}==\frac{1}{\frac{9!}{7!2!}}=\frac{7!2!}{9 \times 8 \times 7!}=\frac{2}{9 \times 8}=\frac{1}{36} \quad \quad{ }^{n} C_{n}=1
$$

After this box contains only 7 objects and then 3 nuts drawn from it. So the probability of drawing 3 nuts from the remaining objects is,

$$
P_{2}=\frac{{ }^{3} C_{3}}{{ }^{7} C_{3}}=\frac{1}{\frac{7!}{4!3!}}=\frac{4!3!}{7 \times 6 \times 5 \times 4!}=\frac{1}{35}
$$

After this box contain only 4 objects, probability of drawing 4 bolts from the box,

$$
P_{3}=\frac{{ }^{4} C_{4}}{{ }^{4} C_{4}}=\frac{1}{1}=1
$$

Therefore the required probability is,

$$
P=P_{1} P_{2} P_{3}=\frac{1}{36} \times \frac{1}{35} \times 1=\frac{1}{1260}
$$

SOL 1.28 Option (B) is correct.
Given :

$$
\begin{aligned}
& h=60^{\circ}-0=60^{\circ} \\
& h=60 \times \frac{\pi}{180} \frac{\pi}{3}=1.047 \text { radians }
\end{aligned}
$$

From the table, we hâve
$y_{0}=0, y_{1}=1066, y_{2}=-323, y_{3} \oplus 0, y_{4}=323, y_{5}=-355$ and $y_{6}=0$
From the Simpson's $1 / 3$ rd rule the flywheel Energy is,

$$
E=\frac{h}{3}\left[\left(y_{0}+y_{6}\right)+4\left(y_{1}+y_{3}+y_{5}\right)+2\left(y_{2}+y_{4}\right)\right]
$$

Substitute the values, we get

$$
\begin{aligned}
E & =\frac{1.047}{3}[(0+0)+4(1066+0-355)+2(-323+323)] \\
& =\frac{1.047}{3}[4 \times 711+2(0)]=993 \mathrm{Nm} \text { rad }(\text { Joules } / \text { cycle })
\end{aligned}
$$

SOL 1.29 Option (A) is correct.
Given : $\quad M=\left[\begin{array}{cc}\frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5}\end{array}\right]$
And

$$
[M]^{T}=[M]^{-1}
$$

We know that when $[A]^{T}=[A]^{-1}$ then it is called orthogonal matrix.

$$
[M]^{T}=\frac{I}{[M]}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

$$
[M]^{T}[M]=I
$$

Substitute the values of M and M^{T}, we get

$$
\begin{array}{r}
{\left[\begin{array}{ll}
\frac{3}{5} & x \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right] \downarrow\left[\begin{array}{ll}
\frac{3}{5} & \frac{4}{5} \\
x & \frac{3}{5}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
\left(\frac{3}{5} \times \frac{3}{5}\right)+x^{2} & \left(\frac{3}{5} \times \frac{4}{5}\right)+\frac{3}{5} x \\
\left(\frac{4}{5} \times \frac{3}{5}\right)+\frac{3}{5} x & \left(\frac{4}{5} \times \frac{4}{5}\right)+\left(\frac{3}{5} \times \frac{3}{5}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
\frac{9}{25}+x^{2} & \frac{12}{25}+\frac{3}{5} x \\
\frac{12}{25}+\frac{3}{5} x & 1
\end{array}\right]}
\end{array}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Comparing both sides a_{12} element,

$$
\frac{12}{25}+\frac{3}{5} x=0 \rightarrow x=-\frac{12}{25} \times \frac{5}{3}=-\frac{4}{5}
$$

SOL 1.30 Option (C) is correct.
Let,

$$
\boldsymbol{V}=3 x z \boldsymbol{i}+2 x y \boldsymbol{j}-y z^{2} \boldsymbol{k}
$$

We know divergence vector field of \boldsymbol{V} is given by $(\nabla \cdot \boldsymbol{V})$
So,

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{V}=\left(\frac{\partial}{\partial x} i+\frac{\partial}{\partial y} j+\frac{\partial}{\partial z} k\right) \cdot\left(3 x z \boldsymbol{i}+2 x y \boldsymbol{j}-y z^{2} \boldsymbol{k}\right) \\
& \nabla \cdot \boldsymbol{V}=3 z+2 x-2 y z
\end{aligned}
$$

At point $P(1,1,1)$
$(\nabla \cdot \boldsymbol{V})_{P(1,1,1)}=3 \times 1+2 \times 1-2 \times 1 \times 1=3$

SOL 1.31 Option (C) is correct.
Let

$$
f(s)=\mathcal{L}^{-1}\left[\frac{1}{s^{2}+s}\right]
$$

First, take the function $\frac{1}{s^{2}+s}$ and break it by the partial fraction,

$$
\begin{aligned}
\frac{1}{s^{2}+s} & =\frac{1}{s(s+1)}=\frac{1}{s}-\frac{1}{(s+1)} \quad\left\{\begin{array}{l}
\text { Solve by } \\
\frac{1}{(s+1)}=\frac{A}{s}+\frac{B}{s+1}
\end{array}\right\} \\
\text { So, } \quad \mathcal{L}^{-1}\left(\frac{1}{s^{2}+s}\right) & =\mathcal{L}^{-1}\left[\frac{1}{s}-\frac{1}{(s+1)}\right]=\mathcal{L}^{-1}\left[\frac{1}{s}\right]-\mathcal{L}^{-1}\left[\frac{1}{s+1}\right]=1-e^{-t}
\end{aligned}
$$

SOL 1.32 Option (D) is correct.
Total number of cases $=2^{3}=8$
\& Possible cases when coins are tossed simultaneously.

H	H	H
H	H	T
H	T	H
T	H	H
H	T	T
T	H	T
T	T	H
T	T	T

From these cases we can see that out of total 8 cases 7 cases contain at least one head. So, the probability of come at least one head is $=\frac{7}{8}$

SOL 1.33 Option (C) is correct.
Given: $\quad z=x+i y$ is a analytic function

$$
\begin{align*}
f(z) & =u(x, y)+i v(x, y) \\
u & =x y \tag{i}
\end{align*}
$$

Analytic function satisfies the Cauchy-Riemann equation.

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

So from equation (i),

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=y \Rightarrow \frac{\partial v}{\partial y}=y \\
& \frac{\partial u}{\partial y}=x \quad \Rightarrow \quad \frac{\partial v}{\partial x}=-x
\end{aligned}
$$

Let $v(x, y)$ be the conjugate function of $u(x, y)$

$$
d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y=(-x) d x+(y) d y
$$

Integrating both the sides,

$$
\begin{aligned}
\int d v & =-\int x d x+\int y d y \\
v & =-\frac{x^{2}}{2}+\frac{y^{2}}{2}+k=\frac{1}{2}\left(y^{2}-x^{2}\right)+k
\end{aligned}
$$

SOL 1.34 Option (A) is correct.
Given $\quad x \frac{d y}{d x}+y=x^{4}$

$$
\begin{equation*}
\frac{d y}{d x}+\left(\frac{1}{x}\right) y=x^{3} \tag{i}
\end{equation*}
$$

It is a single order differential equation. Compare this with $\frac{d y}{d x}+P y=Q$ and we get

GATE Previous Year Solved Paper For Mechanical Engineering

$$
P=\frac{1}{x} \quad Q=x^{3}
$$

Its solution will be

$$
\begin{aligned}
y(\text { I.F. }) & =\int Q(\text { I.F. }) d x+C \\
\text { I.F. } & =e^{\int P d x}=e^{\int \frac{1}{x} d x}=e^{\log _{e} x}=x
\end{aligned}
$$

Complete solution is given by,

$$
\begin{equation*}
y x=\int x^{3} \times x d x+C=\int x^{4} d x+C=\frac{x^{5}}{5}+C \tag{ii}
\end{equation*}
$$

and $y(1)=\frac{6}{5}$ at $x=1 \Rightarrow y=\frac{6}{5}$ From equation (ii),

$$
\frac{6}{5} \times 1=\frac{1}{5}+C \Rightarrow C=\frac{6}{5}-\frac{1}{5}=1
$$

Then, from equation (ii), we get

$$
y x=\frac{x^{5}}{5}+1 \Rightarrow y=\frac{x^{4}}{5}+\frac{1}{x}
$$

SOL 1.35 Option (B) is correct.
The equation of circle with unit radius and centre at origin is given by,

$$
x^{2}+y^{2}=1
$$

Finding the integration of $(x+y)^{2}$ on path $A B$ traversed in counter-clockwise sense So using the polar form
Let: $x=\cos \theta, y=\sin \theta$, and $r=1$
So put the value of x and y and limits in first quadrant between 0 to $\pi / 2$.
Hence,

$$
\begin{aligned}
I & =\int_{0}^{\pi / 2}(\cos \theta+\sin \theta)^{2} d \theta \\
& =\int_{0}^{\pi / 2}\left(\cos ^{2} \theta+\sin ^{2} \theta+2 \sin \theta \cos \theta\right) d \theta \\
& =\int_{0}^{\pi / 2}(1+\sin 2 \theta) d \theta
\end{aligned}
$$

Integrating above equation, we get

$$
=\left[\theta-\frac{\cos 2 \theta}{2}\right]_{0}^{\pi / 2}=\left[\left(\frac{\pi}{2}-\frac{\cos \pi}{2}\right)-\left(0-\frac{\cos 0}{2}\right)\right]
$$

GATE Previous Year Solved Paper For Mechanical Engineering

$$
=\left(\frac{\pi}{2}+\frac{1}{2}\right)-\left(-\frac{1}{2}\right)=\frac{\pi}{2}+1
$$

SOL 1.36 Option (A) is correct.
The given equation of surface is

$$
\begin{equation*}
z^{2}=1+x y \tag{i}
\end{equation*}
$$

Let $P(x, y, z)$ be the nearest point on the surface (i), then distance from the origin is

$$
\begin{align*}
d & =\sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}} \\
d^{2} & =x^{2}+y^{2}+z^{2} \\
z^{2} & =d^{2}-x^{2}-y^{2} \tag{ii}
\end{align*}
$$

From equation (i) and (ii), we get

$$
\begin{aligned}
d^{2}-x^{2}-y^{2} & =1+x y \\
d^{2} & =x^{2}+y^{2}+x y+1
\end{aligned}
$$

$$
\begin{equation*}
f(x, y)=d^{2}=x^{2}+y^{2}+x y+1 \tag{iii}
\end{equation*}
$$

Let
The $f(x, y)$ be the maximum or minimum according to d^{2} maximum or minimum.
Differentiating equation (iii) w.r.t x and y respectively, we get

$$
\frac{\partial f}{\partial x}=2 x+y \text { or } \frac{\partial f}{\partial y}=2 y+x
$$

Applying maxima minima principle and putting $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ equal to zero,

$$
\frac{\partial f}{\partial x}=2 x+y=0 \text { or } \frac{\partial f}{\partial y}=2 y+x=0
$$

Solving these equations, we get $x=0, y=0$
So, $x=y=0$ is only one stationary point.
Now

$$
\begin{aligned}
p & =\frac{\partial^{2} f}{\partial x^{2}}=2 \\
q & =\frac{\partial^{2} f}{\partial x \partial y}=1 \\
r & =\frac{\partial^{2} f}{\partial y^{2}}=2
\end{aligned}
$$

or

$$
p r-q^{2}=4-1=3>0 \text { and } r \text { is positive. }
$$

So, $\quad f(x, y)=d^{2}$ is minimum at $(0,0)$.
Hence minimum value of d^{2} at $(0,0)$.

$$
\begin{aligned}
d^{2} & =x^{2}+y^{2}+x y+1=1 \\
d & =1 \text { or } f(x, y)=1
\end{aligned}
$$

So, the nearest point is

$$
\begin{aligned}
& \\
\Rightarrow \quad z^{2} & =1+x y=1+0 \\
& \\
z & = \pm 1
\end{aligned}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

SOL 1.37 Option (A) is correct.
Given : $y^{2}=4 x$ and $x^{2}=4 y$ draw the curves from the given equations,

The shaded area shows the common area. Now finding the intersection points of the curves.

$$
y^{2}=4 x=4 \sqrt{4 y}=8 \sqrt{y} \quad x=\sqrt{4 y} \text { From second curve }
$$

Squaring both sides

$$
y^{4}=8 \times 8 \times y \Rightarrow y\left(y^{3}-64\right)=0
$$

$$
y=4 \& 0
$$

Similarly put $y=0$ in curve $x^{2}=4 y$

And Put

$$
x^{2}=4 \times 0=0 \Rightarrow x=0
$$

So, $\quad x=4,0$
Therefore the intersection points of the curves are $(0,0)$ and $(4,4)$.
So the enclosed area is given by

$$
A=\int_{x_{1}}^{x_{2}}\left(y_{1}-y_{2}\right) d x
$$

Put y_{1} and y_{2} from the equation of curves $y^{2}=4 x$ and $x^{2}=4 y$

$$
\begin{aligned}
A & =\int_{0}^{4}\left(\sqrt{4 x}-\frac{x^{2}}{4}\right) d x \\
& =\int_{0}^{4}\left(2 \sqrt{x}-\frac{x^{2}}{4}\right) d x=2 \int_{0}^{4} \sqrt{x} d x-\frac{1}{4} \int_{0}^{4} x^{2} d x
\end{aligned}
$$

Integrating the equation, we get

$$
\begin{aligned}
A & =2\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{4}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{4} \\
& =\frac{4}{3} \times 4^{3 / 2}-\frac{1}{4} \times \frac{4^{3}}{3}=\frac{4}{3} \times 8-\frac{16}{3}=\frac{16}{3}
\end{aligned}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

SOL 1.38 Option (A) is correct.
The cumulative distribution function

$$
f(x)= \begin{cases}0, & x \leq a \\ \frac{x-a}{b-a}, & a<x<b \\ 0, & x \geq b\end{cases}
$$

and density function

Mean

$$
f(x)= \begin{cases}\frac{1}{b-a}, & a \leq x \leq b \\ 0, & a>x, x>b\end{cases}
$$

$$
\begin{aligned}
E(x) & =\sum_{x=a}^{b} x f(x)=\frac{a+b}{2} \\
\text { Variance } & =x^{2} f(x)-\bar{x}^{2}=x^{2} f(x)-[x f(x)]^{2}
\end{aligned}
$$

Substitute the value of $f(x)$

$$
\begin{aligned}
\text { Variance } & =\sum_{x=a}^{b} x^{2} \frac{1}{b-a} d x-\left\{\sum_{x=a}^{b} x \frac{1}{b-a} d x\right\}^{2} \\
& =\left[\frac{x^{3}}{3(b-a)}\right]_{a}^{b}-\left[\left\{\frac{x^{2}}{2(b-a)}\right\}_{a}^{b}\right]^{2} \\
& =\frac{b^{3}-a^{3}}{3(b-a)}-\frac{\left(b^{2}-a^{2}\right)^{2}}{4(b-a)^{2}} \\
& =\frac{(b-a)\left(b^{2}+a b+a^{2}\right)}{3(b-a)}-\frac{(b+a)^{2}(b-a)^{2}}{4(b-a)^{2}} \\
& =\frac{4\left(b^{2}+a b+a^{2}\right)+3(a+b)^{2}}{12}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

Standard deviation $=\sqrt{\text { Variance }}=\sqrt{\frac{(b-a)^{2}}{12}}=\frac{(b-a)}{\sqrt{12}}$
Given : $b=1, a=0$
So, standard deviation $=\frac{1-0}{\sqrt{12}}=\frac{1}{\sqrt{12}}$

SOL 1.39 Option (C) is correct.
Taylor's series expansion of $f(x)$ is given by,

$$
f(x)=f(a)+\frac{(x-a)}{\underline{1}} f^{\prime}(a)+\frac{(x-a)^{2}}{\underline{2}} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{\boxed{3}} f^{\prime \prime \prime}(a)+\ldots
$$

Then from this expansion the coefficient of $(x-a)^{4}$ is $\frac{f^{\prime \prime \prime \prime}(a)}{\underline{4}}$
Given

$$
\begin{aligned}
a & =2 \\
f(x) & =e^{x} \\
f^{\prime}(x) & =e^{x} \\
f^{\prime \prime}(x) & =e^{x}
\end{aligned}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

$$
\begin{aligned}
f^{\prime \prime \prime}(x) & =e^{x} \\
f^{\prime \prime \prime \prime}(x) & =e^{x}
\end{aligned}
$$

Hence, for $a=2$ the coefficient of $(x-a)^{4}$ is $\frac{e^{2}}{\underline{4}}$
SOL 1.40 Option (D) is correct.
Given : $\quad \ddot{x}+3 x=0$ and $x(0)=1$

$$
\left(D^{2}+3\right) x=0
$$

The auxiliary Equation is written as

$$
\begin{aligned}
m^{2}+3 & =0 \\
m & = \pm \sqrt{3} i=0 \pm \sqrt{3} i
\end{aligned}
$$

Here the roots are imaginary

$$
m_{1}=0 \text { and } m_{2}=\sqrt{3}
$$

Solution is given by

$$
\begin{align*}
x & =e^{m_{1} t}\left(A \cos m_{2} t+B \sin m_{2} t\right) \\
& =e^{0}[A \cos \sqrt{3} t+B \sin \sqrt{3} t] \\
& =[A \cos \sqrt{3} t+B \sin \sqrt{3} t] \tag{i}
\end{align*}
$$

Given : $\quad x(0)=1$ at $t=0, x=1$
Substituting in equation (i),

$$
\begin{aligned}
& 1=[A \cos \sqrt{3}(\theta)+B \sin \sqrt{3}(0)]=A+0 \\
& A=1
\end{aligned}
$$

Differentiateing equation (i) w.r.t.t.

$$
\begin{equation*}
\dot{x}=\sqrt{3}[-A \sin \sqrt{3} t+B \cos \sqrt{3} t] \tag{ii}
\end{equation*}
$$

Given

$$
\dot{x}(0)=0 \quad \text { at } t=0, \quad \dot{x}=0
$$

Substituting in equation (ii), we get

$$
\begin{aligned}
0 & =\sqrt{3}[-A \sin 0+B \cos 0] \\
B & =0
\end{aligned}
$$

Substituting $A \& B$ in equation (i)

$$
\begin{aligned}
x & =\cos \sqrt{3} t \\
x(1) & =\cos \sqrt{3}=0.99
\end{aligned}
$$

SOL 1.41 Option (B) is correct.
Let

$$
\begin{array}{rlr}
f(x) & =\lim _{x \rightarrow 8} \frac{x^{1 / 3}-2}{(x-8)} & \frac{0}{0} \text { form } \\
& =\lim _{x \rightarrow 8} \frac{\frac{1}{3} x^{-2 / 3}}{1} & \text { Applying L-Hospital rule }
\end{array}
$$

Substitute the limits, we get

$$
f(x)=\frac{1}{3}(8)^{-2 / 3}=\frac{1}{3}\left(2^{3}\right)^{-2 / 3}=\frac{1}{4 \times 3}=\frac{1}{12}
$$

SOL 1.42

SOL 1.43

SOL 1.44
Option (D) is correct.
We know that the divergence is defined as $\nabla \cdot \boldsymbol{V}$
Let

$$
\boldsymbol{V}=(x-y) \boldsymbol{i}+(y-x) \boldsymbol{j}+(x+y+z) \boldsymbol{k}
$$

And

$$
\nabla=\left(\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right)
$$

So,

$$
\begin{gathered}
\nabla \cdot \boldsymbol{V}=\left(\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right) \cdot[(x-y) \boldsymbol{i}+(y-x) \boldsymbol{j}+(x+y+z) \boldsymbol{k}] \\
=\frac{\partial}{\partial x}(x-y)+\frac{\partial}{\partial y}(y-x)+\frac{\partial}{\partial z}(x+y+z) \\
=1+1+1=3
\end{gathered}
$$

SOL 1.45 Option (A) is correct.
Given :

GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY
ISBN: 9788192276250
Visit us at: www.nodia.co.in

The equation of line in intercept form is given by

$$
\begin{array}{rlrl}
\frac{x}{2}+\frac{y}{1} & =1 & \frac{x}{a}+\frac{y}{b}=1 \\
x+2 y & =2 & \Rightarrow x=2(1-y) &
\end{array}
$$

The limit of x is between 0 to $x=2(1-y)$ and y is 0 to 1 ,
Now $\quad \iint_{p} x y d x d y=\int_{y=0}^{y=1} \int_{x=0}^{2(1-y)} x y d x d y=\int_{y=0}^{y=1}\left[\frac{x^{2}}{2}\right]_{0}^{2(1-y)} y d y$

$$
=\int_{y=0}^{y=1} y\left[\frac{4(1-y)^{2}}{2}-0\right] d y
$$

$$
=\int_{y=0}^{y=1} 2 y\left(1+y^{2}-2 y\right) d y=\int_{y=0}^{y=1} 2\left(y+y^{3}-2 y^{2}\right) d y
$$

Again Integrating and substituting the limits, we get

Option (B) is correct.

$$
\left.\begin{array}{rl}
\iint_{p} x y d x d y & =2\left[\frac{y^{2}}{2}+\frac{y^{4}}{4} 0^{\frac{2 y^{3}}{3}}\right]_{0}^{1}=2\left[\frac{1}{2}+\frac{1}{4}-\frac{2}{3}-0\right] \\
& =2\left[\frac{6+3-8}{12}\right]=\frac{2}{12}=\frac{1}{6}
\end{array}\right\} \text { is correct. }
$$

Direction derivative of a function f along a vector \boldsymbol{P} is given by

$$
\begin{aligned}
\boldsymbol{a} & =\operatorname{grad} f \cdot \frac{\boldsymbol{a}}{|\boldsymbol{a}|} \\
\operatorname{grad} f & =\left(\frac{\partial f}{\partial x} \boldsymbol{i}+\frac{\partial f}{\partial y} \boldsymbol{j}+\frac{\partial f}{\partial z} \boldsymbol{k}\right) \\
f(x, y, z) & =x^{2}+2 y^{2}+z, \quad \boldsymbol{a}=3 \boldsymbol{i}-4 \boldsymbol{j} \\
\boldsymbol{a} & =\operatorname{grad}\left(x^{2}+2 y^{2}+z\right) \cdot \frac{3 \boldsymbol{i}-4 \boldsymbol{j}}{\sqrt{(3)^{2}+(-4)^{2}}} \\
& =(2 x \boldsymbol{i}+4 y \boldsymbol{j}+\boldsymbol{k}) \cdot \frac{(3 \boldsymbol{i}-4 \boldsymbol{j})}{\sqrt{25}}=\frac{6 x-16 y}{5}
\end{aligned}
$$

where

At point $P(1,1,2)$ the direction derivative is

$$
a=\frac{6 \times 1-16 \times 1}{5}=-\frac{10}{5}=-2
$$

SOL 1.47 Option (B) is correct.
Given : $\quad 2 x+3 y=4$

$$
\begin{gathered}
x+y+z=4 \\
x+2 y-z=a
\end{gathered}
$$

It is a set of non-homogenous equation, so the augmented matrix of this system is

$$
\begin{array}{rlr}
{[A: B]} & =\left[\begin{array}{rrrrr}
2 & 3 & 0 & : & 4 \\
1 & 1 & 1 & : & 4 \\
1 & 2 & -1 & : & a
\end{array}\right] \\
& \sim\left[\begin{array}{rrrrr}
2 & 3 & 0 & : & 4 \\
0 & -1 & 2 & : & 4 \\
2 & 3 & 0 & : & 4+a
\end{array}\right] \quad R_{3} \rightarrow R_{3}+R_{2}, R_{2} \rightarrow 2 R_{2}-R_{1} \\
& \sim\left[\begin{array}{rrrrr}
2 & 3 & 0 & : & 4 \\
0 & -1 & 2 & : & 4 \\
0 & 0 & 0 & : & a
\end{array}\right] & R_{3} \rightarrow R_{3}-R_{1}
\end{array}
$$

So, for a unique solution of the system of equations, it must have the condition

$$
\rho[A: B]=\rho[A]
$$

So, when putting $a=0$
We get

$$
\rho[A: B]=\rho[A]
$$

SOL 1.48 Option (D) is correct.
Here we check all the four optionsfor unbounded condition.

$$
\begin{align*}
\int_{0}^{\pi / 4} \tan x d x & =[\log |\sec x|]_{0}^{\pi / 4}=\left[\log \left|\sec \frac{\pi}{4}\right|-\log |\sec 0|\right] \tag{A}\\
& =\log \sqrt{2}-\log 1=\log \sqrt{2}
\end{align*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{x^{2}+1} d x=\left[\tan ^{-1} x\right]_{0}^{\infty}=\tan ^{-1} \infty-\tan ^{-1}(0)=\frac{\pi}{2}-0=\frac{\pi}{2} \tag{B}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} x e^{-x} d x \tag{C}
\end{equation*}
$$

Let

$$
\begin{align*}
& \begin{aligned}
I & =\int_{0}^{\infty} x e^{-x} d x=x \int_{0}^{\infty} e^{-x} d x-\int_{0}^{\infty}\left[\frac{d}{d x}(x) \int e^{-x} d x\right] d x \\
& =\left[-x e^{-x}\right]_{0}^{\infty}+\int_{0}^{\infty} e^{-x} d x=\left[-x e^{-x}-e^{-x}\right]_{0}^{\infty}=\left[-e^{-x}(x+1)\right]_{0}^{\infty} \\
& =-[0-1]=1
\end{aligned} \\
& \int_{0}^{1} \frac{1}{1-x} d x=-\int_{0}^{1} \frac{1}{x-1} d x=-[\log (x-1)]_{0}^{1}-[\log 0-\log (-1)]
\end{align*}
$$

Both $\log 0$ and $\log (-1)$ undefined so it is unbounded.

SOL 1.49 Option (A) is correct.
Let

$$
I=\oint f(z) d z \text { and } f(z)=\frac{\cos z}{z}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

Then

$$
\begin{equation*}
I=\oint \frac{\cos z}{z} d z=\oint \frac{\cos z}{|z-0|} d z \tag{i}
\end{equation*}
$$

Given that $|z|=1$ for unit circle. From the Cauchy Integral formula

$$
\begin{equation*}
\oint \frac{f(z)}{z-a} d z=2 \pi i f(a) \tag{ii}
\end{equation*}
$$

Compare equation (i) and (ii), we can say that,

Or,

$$
a=0 \text { and } f(z)=\cos z
$$

Now from equation (ii) we get

$$
\oint \frac{f(z)}{z-0} d z=2 \pi i \times 1=2 \pi i \quad a=0
$$

SOL 1.50 Option (D) is correct.
Given

$$
\begin{equation*}
y=\frac{2}{3} x^{3 / 2} \tag{i}
\end{equation*}
$$

We know that the length of curve is given by $\int_{x_{1}}^{x_{2}}\left\{\sqrt{\left(\frac{d y}{d x}\right)^{2}+1}\right\} d x$
Differentiate equation(i) w.r.t. x

$$
\frac{d y}{d x}=\frac{2}{3} \times \frac{3}{2} x^{\frac{3}{2}-1}=x^{1 / 2}=\sqrt{x}
$$

Substitute the limit $x_{1}=0$ to $x_{2}=1$ and $\frac{d y}{d x}$ in equation (ii), we get

$$
\begin{aligned}
\mathcal{L} & =\int_{0}^{1}\left(\sqrt{(\sqrt{x})^{2}+1}\right) d x=\int_{0}^{1} \sqrt{x+1} d x \\
& =\left[\frac{2}{3}(x+1)^{3 / 2}\right]_{0}^{1}=1.22
\end{aligned}
$$

SOL 1.51 Option (B) is correct.
Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right] \quad \lambda_{1} \text { and } \lambda_{2} \text { is the eigen values of the matrix. }
$$

For eigen values characteristic matrix is,

$$
\begin{align*}
|A-\lambda I| & =0 \\
\left|\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right]-\lambda\left[\begin{array}{lr}
1 & 0 \\
0 & 1
\end{array}\right]\right| & =0 \tag{i}\\
\left\lvert\, \begin{array}{rr}
(1-\lambda) & 2 \\
0(2-\lambda)
\end{array}\right. & =0 \\
(1-\lambda)(2-\lambda) & =0 \Rightarrow \lambda=1 \& 2
\end{align*}
$$

So, Eigen vector corresponding to the $\lambda=1$ is,

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
a
\end{array}\right] } & =0 \\
2 a+a & =0 \Rightarrow a=0
\end{aligned}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

Again for $\lambda=2$

$$
\begin{aligned}
{\left[\begin{array}{rr}
-1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
b
\end{array}\right] } & =0 \\
-1+2 b & =0 \quad b=\frac{1}{2}
\end{aligned}
$$

Then sum of $\quad a \& b \Rightarrow a+b=0+\frac{1}{2}=\frac{1}{2}$

SOL 1.52 Option (C) is correct.
Given $\quad f(x, y)=y^{x}$
First partially differentiate the function w.r.t. y

$$
\frac{\partial f}{\partial y}=x y^{x-1}
$$

Again differentiate. it w.r.t. x

$$
\frac{\partial^{2} f}{\partial x \partial y}=y^{x-1}(1)+x\left(y^{x-1} \log y\right)=y^{x-1}(x \log y+1)
$$

At :

$$
\begin{aligned}
& x=2, y=1 \\
& \frac{\partial^{2} f}{\partial x \partial y}=(1)^{2-1}(2 \log 1+1)=1(2 \times 0+1)=1
\end{aligned}
$$

SOL 1.53

Option (A) is correct.
Given :

where $D=d / d x$
The auxiliary equation is

$$
\begin{aligned}
m^{2}+2 m+1 & =0 \\
(m+1)^{2} & =0, m=-1,-1
\end{aligned}
$$

The roots of auxiliary equation are equal and hence the general solution of the given differential equation is,

$$
\begin{equation*}
y=\left(C_{1}+C_{2} x\right) e^{m_{1} x}=\left(C_{1}+C_{2} x\right) e^{-x} \tag{i}
\end{equation*}
$$

Given $y(0)=0$ at $x=0, \quad \Rightarrow y=0$
Substitute in equation (i), we get

$$
\begin{aligned}
& 0=\left(C_{1}+C_{2} \times 0\right) e^{-0} \\
& 0=C_{1} \times 1 \Rightarrow C_{1}=0
\end{aligned}
$$

Again $y(1)=0$, at $x=1 \Rightarrow y=0$
Substitute in equation (i), we get

$$
\begin{aligned}
0 & =\left[C_{1}+C_{2} \times(1)\right] e^{-1}=\left[C_{1}+C_{2}\right] \frac{1}{e} \\
C_{1}+C_{2} & =0 \Rightarrow C_{2}=0
\end{aligned}
$$

Substitute C_{1} and C_{2} in equation (i), we get

$$
y=(0+0 x) e^{-x}=0
$$

GATE Previous Year Solved Paper For Mechanical Engineering

And

$$
y(0.5)=0
$$

SOL 1.54 Option (B) is correct.
Given : $\quad y=x^{2}$
and interval $[1,5]$
At $\quad x=1 \quad \Rightarrow y=1$
And at $\quad x=5 \quad y=(5)^{2}=25$
Here the interval is bounded between 1 and 5
So, the minimum value at this interval is 1 .

SOL 1.55 Option (A) is correct
Let square matrix

$$
A=\left[\begin{array}{ll}
x & y \\
y & x
\end{array}\right]
$$

The characteristic equation for the eigen values is given by

$$
\begin{aligned}
&|A-\lambda I|=0 \\
& \mid x-\lambda y \\
& y x-\lambda
\end{aligned} \left\lvert\,=0 \quad \begin{aligned}
&x-\lambda)^{2}-y^{2}=0 \\
&(x-\lambda)^{2}=y^{2} \\
& x-\lambda= \pm y \\
& \lambda \neq x \pm y
\end{aligned}\right.
$$

So, eigen values are real if matrix is real and symmetric.

SOL 1.56 Option (B) is correct.
The Cauchy-Reimann equation, the necessary condition for a function $f(z)$ to be analytic is

$$
\begin{aligned}
\frac{\partial \varphi}{\partial x} & =\frac{\partial \psi}{\partial y} \\
\frac{\partial \varphi}{\partial y} & =-\frac{\partial \psi}{\partial x}
\end{aligned}
$$

$$
\text { when } \frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial x} \text { exist. }
$$

SOL 1.57 Option (A) is correct.
Given : $\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}+\frac{\partial \varphi}{\partial x}+\frac{\partial \varphi}{\partial y}=0$
Order is determined by the order of the highest derivative present in it.
Degree is determined by the degree of the highest order derivative present in it after the differential equation is cleared of radicals and fractions.
So, degree $=1$ and order $=2$
GATE Previous Year Solved Paper For Mechanical Engineering

SOL 1.58 Option (B) is correct.
Given $\quad y=x+\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \infty}}}$

$$
\begin{equation*}
y-x=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \infty}}} \tag{i}
\end{equation*}
$$

Squaring both the sides,

$$
\begin{align*}
(y-x)^{2} & =x+\sqrt{x+\sqrt{x+\ldots \ldots \infty}} \\
(y-x)^{2} & =y \\
y^{2}+x^{2}-2 x y & =y \tag{ii}
\end{align*}
$$

We have to find $y(2)$, put $x=2$ in equation (ii),

$$
\begin{aligned}
y^{2}+4-4 y & =y \\
y^{2}-5 y+4 & =0 \\
(y-4)(y-1) & =0 \\
y & =1,4
\end{aligned}
$$

From Equation (i) we see that
For $y(2)$

$$
y=2+\sqrt{2+\sqrt{2+\sqrt{2+\ldots . \infty}}}>2
$$

Therefore,

$$
y=4
$$

SOL 1.59
Option (B) is correct.

Vector area of $\triangle A B C$,

$$
\begin{aligned}
A & =\frac{1}{2} \boldsymbol{B} \boldsymbol{C} \times \boldsymbol{B} \boldsymbol{A}=\frac{1}{2}(\boldsymbol{c}-\boldsymbol{b}) \times(\boldsymbol{a}-\boldsymbol{b}) \\
& =\frac{1}{2}[\boldsymbol{c} \times \boldsymbol{a}-\boldsymbol{c} \times \boldsymbol{b}-\boldsymbol{b} \times \boldsymbol{a}+\boldsymbol{b} \times \boldsymbol{b}] \\
& =\frac{1}{2}[\boldsymbol{c} \times \boldsymbol{a}+\boldsymbol{b} \times \boldsymbol{c}+\boldsymbol{a} \times \boldsymbol{b}] \\
& \boldsymbol{b} \times \boldsymbol{b}=0 \text { and } \boldsymbol{c} \times \boldsymbol{b}=-(\boldsymbol{b} \times \boldsymbol{c}) \\
& =\frac{1}{2}[(\boldsymbol{a}-\boldsymbol{b}) \times(\boldsymbol{a}-\boldsymbol{c})]
\end{aligned}
$$

Option (C) is correct.
Given :

$$
\frac{d y}{d x}=y^{2} \text { or } \frac{d y}{y^{2}}=d x
$$

Integrating both the sides
GATE Previous Year Solved Paper For Mechanical Engineering

$$
\begin{align*}
\int \frac{d y}{y^{2}} & =\int d x \\
-\frac{1}{y} & =x+C \tag{i}
\end{align*}
$$

Given $y(0)=1$ at $\quad x=0 \quad \Rightarrow y=1$
Put in equation (i) for the value of C

$$
-\frac{1}{1}=0+C \Rightarrow C=-1
$$

From equation (i),

$$
\begin{aligned}
-\frac{1}{y} & =x-1 \\
y & =-\frac{1}{x-1}
\end{aligned}
$$

For this value of $y, x-1 \neq 0$ or $x \neq 1$
And $\quad x<1$ or $x>1$

SOL 1.61 Option (A) is correct.
Let

$$
\phi(t)=\int_{0}^{t} f(t) d t \text { and } \phi(0)=0 \text { then } \phi^{\prime}(t)=f(t)
$$

We know the formula of Laplace transforms of $\phi^{\prime}(t)$ is

$$
\begin{aligned}
L\left[\phi^{\prime}(t)\right] & =s L[\phi(t)]-\phi(0)=s L[\phi(t)] & \phi(0)=0 \\
L[\phi(t)] & =\frac{1}{s} L\left[\phi^{\prime}(t)\right] &
\end{aligned}
$$

Substitute the values of $\phi(t)$ and $\phi^{\prime}(t)$, we get

$$
\begin{aligned}
L\left[\int_{0}^{t} f(t) d t\right] & =\frac{1}{s} L[f(t)] \\
\text { or } & L\left[\int_{0}^{t} f(t) d t\right]
\end{aligned}=\frac{1}{s} F(s)
$$

SOL 1.62 Option (A) is correct.
From the Trapezoidal Method

$$
\begin{align*}
\int_{a}^{b} f(x) d x & =\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right) \ldots . .2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \tag{i}\\
\text { Interval } h & =\frac{2 \pi-0}{8}=\frac{\pi}{4}
\end{align*}
$$

Find $\int_{0}^{2 \pi} \sin x d x$ Here $f(x)=\sin x$
Table for the interval of $\pi / 4$ is as follows

Angle θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
$f(x)=\sin x$	0	0.707	1	0.707	0	-0.707	-1	-0.707	0

GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY

Now from equation(i),

$$
\begin{aligned}
\int_{0}^{2 \pi} \sin x d x & =\frac{\pi}{8}[0+2(0.707+1+0.707+0-0.707-1-0.0707+0)] \\
& =\frac{\pi}{8} \times 0=0
\end{aligned}
$$

SOL 1.63 Option (D) is correct.
The X and Y be two independent random variables.
So,

$$
\begin{equation*}
E(X Y)=E(X) E(Y) \tag{i}
\end{equation*}
$$

\& covariance is defined as

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E(X Y)-E(X) E(Y) \\
& =E(X) E(Y)-E(X) E(Y) \\
& =0
\end{aligned}
$$

From eqn. (i)

For two independent random variables

$$
\begin{aligned}
& \operatorname{Var}(X+Y)
\end{aligned}=\operatorname{Var}(X)+\operatorname{Var}(Y), ~\left(X^{2} Y^{2}\right)=E\left(X^{2}\right) E\left(Y^{2}\right)
$$

So, option (D) is incorrect.

SOL 1.64 Option (B) is correct.

Let,

$$
\begin{aligned}
f(x) & =\lim _{x \rightarrow 0} \frac{e^{x}-\left(1+x+\frac{x^{2}}{2}\right)}{x^{3}} & & \frac{0}{0} \text { form } \\
& =\lim _{x \rightarrow 0} \frac{e^{x}-(1+x)}{3 x^{2}} & & \frac{0}{0} \text { form } \\
& =\lim _{x \rightarrow 0} \frac{e^{x}-1}{6 x} & & \frac{0}{0} \text { form } \\
& =\lim _{x \rightarrow 0} \frac{e^{x}}{6}=\frac{e^{0}}{6}=\frac{1}{6} & &
\end{aligned}
$$

SOL 1.65 Option (B) is correct.
Let, $\quad A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
Let λ is the eigen value of the given matrix then characteristic matrix is

$$
\begin{aligned}
& |A-\lambda I|=0 \\
& \left|\begin{array}{rr}
2-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right|=0 \\
& (2-\lambda)^{2}=0 \\
& \lambda=2,2
\end{aligned}
$$

So, only one eigen vector.

GATE Previous Year Solved Paper For Mechanical Engineering

SOL 1.66 Option (D) is correct.

Column I

P. Gauss-Seidel method
Q. Forward Newton-Gauss method
R. Runge-Kutta method
S. Trapezoidal Rule
4. Linear algebraic equation

1. Interpolation
2. Non-linear differential equation
3. Numerical integration

So, correct pairs are, P-4, Q-1, R-2, S-3

SOL 1.67 Option (B) is correct.
Given : $\quad \frac{d y}{d x}+2 x y=e^{-x^{2}}$ and $y(0)=1$
It is the first order linear differential equation so its solution is

$$
y(\text { I.F. })=\int Q(\text { I.F. }) d x+C
$$

compare with
So,

$$
\begin{aligned}
\text { I.F. } & =e^{\int P d x}=e^{\int 2 x d x} \\
& =e^{2 \int x d x}=e^{2 \times \frac{x^{2}}{2}}=e^{x^{2}}
\end{aligned}
$$

$$
\frac{d y}{d x}+P(y)=Q
$$

The complete solution is,

$$
\begin{align*}
y e^{x^{2}} & =\int e^{-x^{2}} \times e^{x^{2}} d x+C \\
& =\int d x+C=x+C \\
y & =\frac{x+c}{e^{a^{2}}} \tag{i}\\
y(0) & =1 \\
x & =0 \Rightarrow y=1
\end{align*}
$$

Given
At
Substitute in equation (i), we get

Then

$$
\begin{aligned}
& 1=\frac{C}{1} \Rightarrow C=1 \\
& y=\frac{x+1}{e^{x^{2}}}=(x+1) e^{-x^{2}}
\end{aligned}
$$

SOL 1.68 Option (C) is correct.
The incorrect statement is, $S=\{x: x \in A$ and $x \in B\}$ represents the union of $\operatorname{set} A$ and set B.
The above symbol (\in) denotes intersection of set A and set B. Therefore this statement is incorrect.

SOL 1.69 Option (D) is correct.
Total number of items $=100$

GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY

Number of defective items $=20$
Number of Non-defective items $=80$
Then the probability that both items are defective, when 2 items are selected at random is,

$$
P=\frac{{ }^{20} C_{2}{ }^{80} C_{0}}{{ }^{100} C_{2}}=\frac{\frac{20!}{18!2!}}{\frac{100!}{98!2!}}=\frac{\frac{20 \times 19}{2}}{\frac{100 \times 99}{2}}=\frac{19}{495}
$$

Alternate Method :

Here two items are selected without replacement.
Probability of first item being defective is

$$
P_{1}=\frac{20}{100}=\frac{1}{5}
$$

After drawing one defective item from box, there are 19 defective items in the 99 remaining items.
Probability that second item is defective,

$$
P_{2}=\frac{19}{899}
$$

then probability that both are defective

$$
P=P_{1} \times P_{2}=\frac{1}{5} \times \frac{19}{99}=\frac{19}{495}
$$

SOL 1.70
Option (A) is correct
Given : $\quad S=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$
Eigen values of this matrix is 5 and 1 . We can say $\lambda_{1}=1 \quad \lambda_{2}=5$
Then the eigen value of the matrix

$$
S^{2}=S S \text { is } \lambda_{1}^{2}, \lambda_{2}^{2}
$$

Because. if $\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots$ are the eigen values of A, then eigen value of A^{m} are $\lambda_{1}^{m}, \lambda_{2}^{m}, \lambda_{3}^{m} \ldots$.
Hence matrix S^{2} has eigen values $(1)^{2}$ and $(5)^{2} \Rightarrow 1$ and 25

SOL 1.71 Option (B) is correct.
Given $\quad f(x)=(x-8)^{2 / 3}+1$
The equation of line normal to the function is

$$
\begin{equation*}
\left(y-y_{1}\right)=m_{2}\left(x-x_{1}\right) \tag{i}
\end{equation*}
$$

Slope of tangent at point $(0,5)$ is

$$
\begin{aligned}
& m_{1}=f^{\prime}(x)=\left[\frac{2}{3}(x-8)^{-1 / 3}\right]_{(0,5)} \\
& m_{1}=f^{\prime}(x)=\frac{2}{3}(-8)^{-1 / 3}=-\frac{2}{3}\left(2^{3}\right)^{-\frac{1}{3}}=-\frac{1}{3}
\end{aligned}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

We know the slope of two perpendicular curves is -1 .

$$
\begin{aligned}
m_{1} m_{2} & =-1 \\
m_{2} & =-\frac{1}{m_{1}}=\frac{-1}{-1 / 3}=3
\end{aligned}
$$

The equation of line, from equation (i) is

$$
\begin{aligned}
(y-5) & =3(x-0) \\
y & =3 x+5
\end{aligned}
$$

SOL 1.72 Option (A) is correct.
Let

$$
\begin{aligned}
f(x) & =\int_{0}^{\pi / 3} e^{i t} d t=\left[\frac{e^{i t}}{i}\right]_{0}^{\pi / 3} \Rightarrow \frac{e^{i \pi / 3}}{i}-\frac{e^{0}}{i} \\
& =\frac{1}{i}\left[e^{\frac{\pi}{3} i}-1\right]=\frac{1}{i}\left[\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}-1\right] \\
& =\frac{1}{i}\left[\frac{1}{2}+i \frac{\sqrt{3}}{2}-1\right]=\frac{1}{i}\left[-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right] \\
& =\frac{1}{i} \times \frac{i}{i}\left[-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right]=-i\left[-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right] \quad i^{2}=-1 \\
& =i\left[\frac{1}{2}-\frac{\sqrt{3}}{2} i\right]=\frac{1}{2} i-\frac{\sqrt{3}}{2} i^{2}=\frac{\sqrt{3}}{2}+\frac{1}{2} i
\end{aligned}
$$

SOL 1.73
Option (B) is correct.
Given

$$
f(x)=\frac{2 x^{2}-7 x+3}{5 x^{2}-12 x-9}
$$

Then

$$
\begin{array}{rlr}
\lim _{x \rightarrow 3} f(x) & =\lim _{x \rightarrow 3} \frac{2 x^{2}-7 x+3}{5 x^{2}-12 x-9} \\
& =\lim _{x \rightarrow 3} \frac{4 x-7}{10 x-12} \quad \text { Applying } L-\text { Hospital rule }
\end{array}
$$

Substitute the limit, we get

$$
\lim _{x \rightarrow 3} f(x)=\frac{4 \times 3-7}{10 \times 3-12}=\frac{12-7}{30-12}=\frac{5}{18}
$$

SOL 1.74 Option (A) is correct.
(P) Singular Matrix \rightarrow Determinant is zero $|A|=0$
(Q) Non-square matrix \rightarrow An $m \times n$ matrix for which $m \neq n$, is called nonsquare matrix. Its determinant is not defined
(R) Real Symmetric Matrix \rightarrow Eigen values are always real.
(S) Orthogonal Matrix \rightarrow A square matrix A is said to be orthogonal if $A A^{T}=I$
Its determinant is always one.

SOL 1.75 Option (B) is correct.
GATE Previous Year Solved Paper For Mechanical Engineering

Given : $\quad \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=3 e^{2 x}$

$$
\left[D^{2}+4 D+3\right] y=3 e^{2 x}
$$

$$
\frac{d}{d x}=D
$$

The auxiliary Equation is,

Then

$$
m^{2}+4 m+3=0 \Rightarrow m=-1,-3
$$

$$
\begin{aligned}
C . F . & =C_{1} e^{-x}+C_{2} e^{-3 x} \\
\text { P.I. } & =\frac{3 e^{2 x}}{D^{2}+4 D+3}=\frac{3 e^{2 x}}{(D+1)(D+3)} \quad \text { Put } D=2 \\
& =\frac{3 e^{2 x}}{(2+1)(2+3)}=\frac{3 e^{2 x}}{3 \times 5}=\frac{e^{2 x}}{5}
\end{aligned}
$$

SOL 1.76 Option (C) is correct.
Given $\quad E F=G \quad$ where $G=I=$ Identity matrix

$$
\left[\begin{array}{rrr}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \times F=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We know that the multiplication of a matrix and its inverse be a identity matrix

$$
A A^{-1}=I
$$

So, we can say that F is the inverse matrix of E

$$
\begin{aligned}
F= & E^{-1}=\frac{[\operatorname{adj} . E]}{|E|} \\
& \operatorname{adj} E=\left[\begin{array}{rrr}
\cos \theta & -(\sin \theta) & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{rrr}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
|E| & =[\cos \theta \times(\cos \theta-0)]-[(-\sin \theta) \times(\sin \theta-0)]+0 \\
& =\cos ^{2} \theta+\sin ^{2} \theta=1
\end{aligned}
$$

Hence, $\quad F=\frac{[\operatorname{adj} . E]}{|E|}=\left[\begin{array}{rrr}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
SOL 1.77 Option (B) is correct.
The probability density function is,

$$
f(t)= \begin{cases}1+t & \text { for }-1 \leq t \leq 0 \\ 1-t & \text { for } 0 \leq t \leq 1\end{cases}
$$

For standard deviation first we have to find the mean and variance of the function.

$$
\begin{aligned}
\operatorname{Mean}(\bar{t}) & =\int_{-1}^{\infty} t f(t) d t=\int_{-1}^{0} t(1+t) d t+\int_{0}^{1} t(1-t) d t \\
& =\int_{-1}^{0}\left(t+t^{2}\right) d t+\int_{0}^{1}\left(t-t^{2}\right) d t
\end{aligned}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

$$
=\left[\frac{t^{2}}{2}+\frac{t^{3}}{3}\right]_{-1}^{0}+\left[\frac{t^{2}}{2}-\frac{t^{3}}{3}\right]_{0}^{1}=\left[-\frac{1}{2}+\frac{1}{3}\right]+\left[\frac{1}{2}-\frac{1}{3}\right]=0
$$

And variance $\left(\sigma^{2}\right)=\int_{-\infty}^{\infty}(t-\bar{t})^{2} f(t) d t \quad \bar{t}=0$

$$
=\int_{-1}^{0} t^{2}(1+t) d t+\int_{0}^{1} t^{2}(1-t) d t
$$

$$
=\int_{-1}^{0}\left(t^{2}+t^{3}\right) d t+\int_{0}^{1}\left(t^{2}-t^{3}\right) d t
$$

$$
=\left[\frac{t^{3}}{3}+\frac{t^{4}}{4}\right]_{-1}^{0}+\left[\frac{t^{3}}{3}-\frac{t^{4}}{4}\right]_{0}^{1}
$$

$$
=-\left[-\frac{1}{3}+\frac{1}{4}\right]+\left[\frac{1}{3}-\frac{1}{4}-0\right]=\frac{1}{12}+\frac{1}{12}=\frac{1}{6}
$$

Now, standard deviation

$$
\sqrt{\left(\sigma^{2}\right)} s=\sqrt{\frac{1}{6}}=\frac{1}{\sqrt{6}}
$$

SOL 1.78 Option (A) is correct.
The Stokes theorem is,

$$
\oint_{C} \boldsymbol{F} \cdot d r=\iint_{S}(\nabla \times \boldsymbol{F}) \cdot \boldsymbol{n} d S=\iint_{S}(\operatorname{Curl} \boldsymbol{F}) \cdot d S
$$

Here we can see that the line integral $\oint_{C} \boldsymbol{F} \cdot d r$ and surface integral $\iint_{S}(\operatorname{Curl} \boldsymbol{F}) \cdot d s$ is related to the stokes theorem.

SOL 1.79 Option (B) is correct.
Let, $\quad P=$ defective items

$$
Q=\text { non-defective items }
$$

10% items are defective, then probability of defective items

$$
P=0.1
$$

Probability of non-defective item

$$
Q=1-0.1=0.9
$$

The Probability that exactly 2 of the chosen items are defective is

$$
\begin{aligned}
& ={ }^{10} C_{2}(P)^{2}(Q)^{8}=\frac{10!}{8!2!}(0.1)^{2}(0.9)^{8} \\
& =45 \times(0.1)^{2} \times(0.9)^{8}=0.1937
\end{aligned}
$$

SOL 1.80 Option (A) is correct.
Let

$$
\begin{aligned}
f(x) & =\int_{-a}^{a}\left(\sin ^{6} x+\sin ^{7} x\right) d x \\
& =\int_{-a}^{a} \sin ^{6} x d x+\int_{-a}^{a} \sin ^{7} x d x
\end{aligned}
$$

We know that

$$
\int_{-a}^{a} f(x) d x= \begin{cases}0 & \text { when } f(-x)=-f(x) ; \text { odd function } \\ 2 \int_{0}^{a} f(x) & \text { when } f(-x)=f(x) ; \text { even function }\end{cases}
$$

Now, here $\sin ^{6} x$ is an even function and $\sin ^{7} x$ is an odd function. Then,

$$
f(x)=2 \int_{0}^{a} \sin ^{6} x d x+0=2 \int_{0}^{a} \sin ^{6} x d x
$$

SOL 1.81

SOL 1.82
Option (C) is correct.
We know, from the Echelon form the rank of any matrix is equal to the Number of non zero rows.
Here order of matrix is 3×4, then, we can say that the Highest possible rank of this matrix is 3 .

Option (A) is correct.
Given

$$
I=\int_{0}^{8} \int_{\pi / 4}^{2} f(x, y) d y d x
$$

We can draw the graph from the limits of the integration, the limit of y is from $y=\frac{x}{4}$ to $y=2$. For x the limit is $\quad x=0$ to $x=8$

Here we change the order of the integration. The limit of x is 0 to 8 but we have to find the limits in the form of y then $x=0$ to $x=4 y$ and limit of y is 0 to 2
So $\int_{0}^{8} \int_{x / 4}^{2} f(x, y) d y d x=\int_{0}^{2} \int_{0}^{4 y} f(x, y) d x d y=\int_{r}^{s} \int_{p}^{q} f(x, y) d x d y$
Comparing the limits and get
$r=0, s=2, p=0, q=4 y$

SOL 1.83 Option (A) is correct.

Let,

$$
A=\left[\begin{array}{llll}
5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 3 & 1
\end{array}\right]
$$

The characteristic equation for eigen values is given by,
GATE Previous Year Solved Paper For Mechanical Engineering

$$
|A-\lambda I|=0
$$

$$
A=\left|\begin{array}{rrrr}
5-\lambda & 0 & 0 & 0 \\
0 & 5-\lambda & 0 & 0 \\
0 & 0 & 2-\lambda & 1 \\
0 & 0 & 3 & 1-\lambda
\end{array}\right|=0
$$

Solving this, we get

$$
\begin{aligned}
(5-\lambda)(5-\lambda)[(2-\lambda)(1-\lambda)-3] & =0 \\
(5-\lambda)^{2}\left[2-3 \lambda+\lambda^{2}-3\right] & =0 \\
(5-\lambda)^{2}\left(\lambda^{2}-3 \lambda-1\right) & =0
\end{aligned}
$$

So,

$$
(5-\lambda)^{2}=0 \Rightarrow \lambda=5,5 \text { and } \lambda^{2}-3 \lambda-1=0
$$

$$
\lambda=\frac{-(-3) \pm \sqrt{9+4}}{2}=\frac{3+\sqrt{13}}{2}, \frac{3-\sqrt{13}}{2}
$$

The eigen values are $\lambda=5,5, \frac{3+\sqrt{13}}{2}, \frac{3-\sqrt{13}}{2}$

Let

$$
X_{1}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

be the eigen vector for the eigen value $\lambda=5$
Then,

$$
\left.\begin{array}{rcrr}
& (A-5 I) X_{1}=0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -3 & 1 \\
0 & 0 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=0
$$

or

$$
-3 x_{3}+x_{4}=0
$$

$$
3 x_{3}-4 x_{4}=0
$$

This implies that $x_{3}=0, x_{4}=0$
Let $\quad x_{1}=k_{1}$ and $x_{2}=k_{2}$
So, eigen vector, $\quad X_{1}=\left[\begin{array}{c}k_{1} \\ k_{2} \\ 0 \\ 0\end{array}\right]$ where $k_{1}, k_{2} \varepsilon R$

SOL 1.84 Option (C) is correct.
Given: $\quad x+y=2$

$$
\begin{equation*}
1.01 x+0.99 y=b, d b=1 \text { unit } \tag{i}
\end{equation*}
$$

We have to find the change in x in the solution of the system. So reduce y

From the equation (i) and (ii).
Multiply equation (i) by 0.99 and subtract from equation (ii)

$$
\begin{aligned}
1.01 x+0.99 y-(0.99 x+0.99 y) & =b-1.98 \\
1.01 x-0.99 x & =b-1.98 \\
0.02 x & =b-1.98
\end{aligned}
$$

Differentiating both the sides, we get

$$
\begin{aligned}
0.02 d x & =d b \\
d x & =\frac{1}{0.02}=50 \text { unit } \quad d b=1
\end{aligned}
$$

SOL 1.85 Option (A) is correct.
Given,

$$
\begin{aligned}
x(u, v) & =u v & \\
\frac{d x}{d u} & =v, & \frac{d x}{d v}=u
\end{aligned}
$$

And $y(u, v)=\frac{v}{u}$

$$
\frac{\partial y}{\partial u}=-\frac{v}{u^{2}} \quad \frac{\partial y}{\partial v}=\frac{1}{u}
$$

We know that,

$$
\begin{aligned}
& \phi(u, v)=\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right] \\
& \phi(u, v)=\left[\begin{array}{cc}
v & u \\
\frac{-v}{u^{2}} & \frac{1}{u}
\end{array}\right]=v \times \frac{1}{u}-u \times\left(-\frac{v}{u^{2}}\right)=\frac{v}{u}+\frac{v}{u}=\frac{2 v}{u}
\end{aligned}
$$

SOL 1.86 Option (D) is correct.

Given : Radius of sphere $r=1$
Let,

$$
\text { Radius of cone }=R
$$

Height of the cone $=H$
GATE Previous Year Solved Paper For Mechanical Engineering

Finding the relation between the volume and Height of the cone
From $\triangle O B D$,

$$
\text { From } \triangle O B D, \quad O B^{2}=O D^{2}+B D^{2} \text {, } \begin{align*}
1 & =(H-1)^{2}+R^{2}=H^{2}+1-2 H+R^{2} \\
R^{2}+H^{2}-2 H & =0 \\
R^{2} & =2 H-H^{2} \\
\text { Volume of the cone, } \quad V & =\frac{1}{3} \pi R^{2} H \tag{i}
\end{align*}
$$

Substitute the value of R^{2} from equation (i), we get

$$
V=\frac{1}{3} \pi\left(2 H-H^{2}\right) H=\frac{1}{3} \pi\left(2 H^{2}-H^{3}\right)
$$

Differentiate V w.r.t to H

$$
\begin{aligned}
\frac{d V}{d H} & =\frac{1}{3} \pi\left[4 H-3 H^{2}\right] \\
\text { Again differentiate } \quad \frac{d^{2} V}{d H^{2}} & =\frac{1}{3} \pi[4-6 H]
\end{aligned}
$$

For minimum and maximum value, using the principal of minima and maxima.
Put $\frac{d V}{d H}=0$

$$
\begin{aligned}
\frac{1}{3} \pi\left[4 H-3 H^{2}\right] & =0 \\
H[4-3 \vec{H}] & =0 \Rightarrow H=0 \text { and } H=\frac{4}{3}
\end{aligned}
$$

At $H=\frac{4}{3}, \quad \frac{d^{2} V}{d H^{2}}=\frac{1}{3} \pi\left[4-6 \times \frac{4}{3}\right]=\frac{1}{3} \pi[4-8]=-\frac{4}{3} \pi<0 \quad$ (Maxima)
And at $H=0, \frac{d^{2} V}{d H^{2}}=\frac{1}{3} \pi[4-0]=\frac{4}{3} \pi>0$
So, for the largest volume of cone, the value of H should be $4 / 3$

SOL 1.87 Option (D) is correct.
Given : $\quad x^{2} \frac{d y}{d x}+2 x y=\frac{2 \ln (x)}{x}$

$$
\frac{d y}{d x}+\frac{2 y}{x}=\frac{2 \ln (x)}{x^{3}}
$$

Comparing this equation with the differential equation $\frac{d y}{d x}+P(y)=Q$ we have $P=\frac{2}{x}$ and $Q=\frac{2 \ln (x)}{x^{3}}$
The integrating factor is,

$$
\begin{gathered}
\text { I.F. }=e^{\int P d x}=e^{\int \frac{2}{x} d x} \\
e^{2 \ln x}=e^{\ln x^{2}}=x^{2}
\end{gathered}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

Complete solution is written as,

$$
\begin{align*}
y(\text { I.F. }) & =\int Q(\text { I.F. }) d x+C \\
y\left(x^{2}\right) & =\int \frac{2 \ln x}{x^{3}} \times x^{2} d x+C=2 \int \underset{\text { (II) }}{\ln x} \times \frac{1}{x} d x+C \tag{i}
\end{align*}
$$

Integrating the value $\int \ln x \times \frac{1}{x} d x$ Separately
Let,

$$
\begin{align*}
I & =\int \ln x \times \frac{1}{x} d x \tag{ii}\\
& =\ln x \int \frac{1}{x} d x-\int\left\{\frac{d}{(\text { (I) })}(\ln x) \times \int \frac{1}{x} d x\right\} d x \\
& =\ln x \ln x-\underbrace{\int \frac{1}{x} \times \ln x d x}_{\mathrm{I}}
\end{align*}
$$

or

$$
\begin{equation*}
I=\frac{(\ln x)^{2}}{2} \tag{iii}
\end{equation*}
$$

From equation(ii)

$$
2 I=(\ln x)^{2}
$$

Substitute the value from equation (iii) in equation (i),

$$
\begin{align*}
y\left(x^{2}\right) & =\frac{2(\ln x)^{2}}{2}+C \\
x^{2} y & =(\ln x)^{2}+C \tag{iv}
\end{align*}
$$

Given $y(1)=0$, means at- $x=1 \quad \rightrightarrows y=0$
then

$$
0=(\ln 1)^{2}+C \Rightarrow C=0
$$

So from equation (iv), we get

$$
x^{2} y=(\ln x)^{2}
$$

Now at $x=e, \quad y(e)=\frac{(\ln e)^{2}}{e^{2}}=\frac{1}{e^{2}}$
SOL 1.88 Option (A) is correct.
Potential function of $v=x^{2} y z$ at $P(1,1,1)$ is $=1^{2} \times 1 \times 1=1$ and at origin $O(0,0,0)$ is 0 .
Thus the integral of vector function from origin to the point $(1,1,1)$ is

$$
\begin{aligned}
& =\left[x^{2} y z\right]_{P}-\left[x^{2} y z\right]_{O} \\
& =1-0=1
\end{aligned}
$$

SOL 1.89 Option (C) is correct.
Let,

$$
f(x)=x^{3}+3 x-7
$$

From the Newton Rapson's method

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{i}
\end{equation*}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

We have to find the value of x_{1}, so put $n=0$ in equation (i),

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
f(x) & =x^{3}+3 x-7 \\
f\left(x_{0}\right) & =1^{3}+3 \times 1-7=1+3-7=-3 \\
f^{\prime}(x) & =3 x^{2}+3 \\
f^{\prime}\left(x_{0}\right) & =3 \times(1)^{2}+3=6 \\
\text { Then, } \quad x_{1} & =1-\frac{(-3)}{6}=1+\frac{3}{6}=1+\frac{1}{2}=\frac{3}{2}=1.5
\end{aligned}
$$

SOL 1.90 Option (D) is correct.
We know a die has 6 faces and 6 numbers so the total number of ways

$$
=6 \times 6=36
$$

And total ways in which sum is either 8 or 9 is 9 , i.e.
$(2,6),(3,6)(3,5)(4,4)(4,5)(5,4)(5,3)(6,2)(6,3)$
Total number of tosses when both the 8 or 9 numbers are not come

$$
=36-9=27
$$

Then probability of not coming sum 8 or 9 is, $=\frac{27}{36}=\frac{3}{4}$
SOL 1.91 Option (C) is correct.
Given :

The solution of this equation is given by,

$$
\begin{equation*}
y=c_{1} e^{m x}+c_{2} e^{n x} \tag{i}
\end{equation*}
$$

Here $m \& n$ are the roots of ordinary differential equation
Given solution is,

$$
\begin{equation*}
y=c_{1} e^{-x}+c_{2} e^{-3 x} \tag{ii}
\end{equation*}
$$

Comparing equation (i) and (ii), we get $m=-1$ and $n=-3$
Sum of roots, $\quad m+n=-p$

$$
-1-3=-p \Rightarrow p=4
$$

and product of roots, $\quad m n=q$

$$
(-1)(-3)=q \Rightarrow q=3
$$

SOL 1.92 Option (C) is correct.
Given : $\quad \frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+(q+1) y=0$

$$
\left[D^{2}+p D+(q+1)\right] y=0
$$

From the previous question, put $p=4$ and $m=3$

$$
\begin{equation*}
\left[D^{2}+4 D+4\right] y=0 \tag{i}
\end{equation*}
$$

The auxilliary equation of equation (i) is written as
GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY
ISBN: 9788192276250

$$
m^{2}+4 m+4=0 \Rightarrow m=-2,-2
$$

Here the roots of auxiliary equation are same then the solution is

$$
y=\left(c_{1}+c_{2} x\right) e^{m x}=x e^{-2 x} \quad\binom{\text { Let } c_{1}=0}{c_{2}=1}
$$

SOL 1.93 Option (C) is correct.
Given: $\quad x=a(\theta+\sin \theta), y=a(1-\cos \theta)$
First differentiate x w.r.t. θ,

$$
\frac{d x}{d \theta}=a[1+\cos \theta]
$$

And differentiate y w.r.t. θ

$$
\frac{d y}{d \theta}=a[0-(-\sin \theta)]=a \sin \theta
$$

We know, $\quad \frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x}=\frac{d y / d \theta}{d x / d \theta}$
Substitute the values of $\frac{d y}{d \theta}$ and $\frac{d x}{d \theta}$

$$
\begin{aligned}
\frac{d y}{d x} & =a \sin \theta \times \frac{1}{a[1+\cos \theta]}=\frac{\sin \theta}{1+\cos \theta}=\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}} \\
& =\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}=\tan \frac{\theta}{2} \quad \cos \theta+1=2 \cos ^{2} \frac{\theta}{2}
\end{aligned}
$$

SOL 1.94

Option (C) is correct.
Given : $P(0.866,0.500,0)$, so we can write

$$
\boldsymbol{P}=0.866 \boldsymbol{i}+0.5 \boldsymbol{j}+0 k
$$

$Q=(0.259,0.966,0)$, so we can write

$$
\boldsymbol{Q}=0.259 \boldsymbol{i}+0.966 \boldsymbol{j}+0 \boldsymbol{k}
$$

For the coplanar vectors

$$
\begin{aligned}
\boldsymbol{P} \cdot \boldsymbol{Q} & =|\boldsymbol{P} \| \boldsymbol{Q}| \cos \theta \\
\cos \theta & =\frac{\boldsymbol{P} \cdot \boldsymbol{Q}}{|\boldsymbol{P} \| \boldsymbol{Q}|} \\
\boldsymbol{P} \cdot \boldsymbol{Q} & =(0.866 \boldsymbol{i}+0.5 \boldsymbol{j}+0 \boldsymbol{k}) \cdot(0.259 \boldsymbol{i}+0.966 \boldsymbol{j}+0 \boldsymbol{k}) \\
& =0.866 \times 0.259+0.5 \times 0.966
\end{aligned}
$$

So,

$$
\begin{aligned}
\cos \theta & =\frac{0.866 \times 0.259+0.5 \times 0.966}{\sqrt{(0.866)^{2}+(0.5)^{2}}+\sqrt{(0.259)^{2}+(0.966)^{2}}} \\
& =\frac{0.22429+0.483}{\sqrt{0.99} \times \sqrt{1.001}}=\frac{0.70729}{\sqrt{0.99} \times \sqrt{1.001}}=0.707 \\
\theta & =\cos ^{-1}(0.707)=45^{\circ}
\end{aligned}
$$

SOL 1.95 Option (B) is correct.
GATE Previous Year Solved Paper For Mechanical Engineering

Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

We know that the sum of the eigen value of a matrix is equal to the sum of the diagonal elements of the matrix
So, the sum of eigen values is,

$$
1+5+1=7
$$

SOL 1.96 Option (D) is correct.
Given : Total number of cards $=52$ and two cards are drawn at random.
Number of kings in playing cards $=4$
So the probability that both cards will be king is given by,

$$
P=\frac{{ }^{4} C_{1}}{{ }^{52} C_{1}} \times \frac{{ }^{3} C_{1}}{{ }^{51} C_{1}}=\frac{4}{52} \times \frac{3}{51}=\frac{1}{221} \quad{ }^{n} C_{r}=\frac{\underline{n}}{\underline{r \underline{n}-r}}
$$

SOL 1.97 Option (B) is correct.
Given : $\quad U(t-a)= \begin{cases}0, & \text { for } t<a \\ 1, & \text { for } t \geq a\end{cases}$
From the definition of Laplace Transform

$$
\begin{aligned}
\mathcal{L}[F(t)] & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
\mathcal{L}[U(t-a)] & =\int_{0}^{\infty} e^{-s t} U(t-a) d t \\
& =\int_{0}^{a} e^{-s t}(0)+\int_{a}^{\infty} e^{-s t}(1) d t=0+\int_{a}^{\infty} e^{-s t} d t \\
\mathcal{L}[U(t-a)] & =\left[\frac{e^{-s t}}{-s}\right]_{a}^{\infty}=0-\left[\frac{e^{-a s}}{-s}\right]=\frac{e^{-a s}}{s}
\end{aligned}
$$

SOL 1.98 Option (D) is correct.
First we have to make the table from the given data

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$
0	1	1		
1	2	1	-2	
2	1	-1	10	12
3	10	9		

Take $x_{0}=0$ and $h=1$
Then

$$
P=\frac{x-x_{0}}{h}=x
$$

GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY

From Newton's forward Formula

$$
\begin{align*}
f(x) & =f\left(x_{0}\right)+\frac{P}{1} \Delta f(0)+\frac{P(P-1)}{\underline{2}} \Delta^{2} f(0)+\frac{P(P-1)(P-2)}{\boxed{3}} \Delta^{3} f(0) \\
& =f(0)+x \Delta f(0)+\frac{x(x-1)}{2} \Delta^{2} f(0)+\frac{x(x-1)(x-2)}{6} \Delta^{3} f(0) \\
& =1+x(1)+\frac{x(x-1)}{2}(-2)+\frac{x(x-1)(x-2)}{6}(12) \tag{12}\\
& =1+x-x(x-1)+2 x(x-1)(x-2) \\
f(x) & =2 x^{3}-7 x^{2}+6 x+1
\end{align*}
$$

SOL 1.99 Option (A) is correct.
Given : $\quad V=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} r^{2} \sin \phi d r d \phi d \theta$
First integrating the term of r, we get

$$
V=\int_{0}^{2 \pi} \int_{0}^{\pi / 3}\left[\frac{r^{3}}{3}\right]_{0}^{1} \sin \phi d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \frac{1}{3} \sin \phi d \phi d \theta
$$

Integrating the term of ϕ, we have

$$
\begin{aligned}
V & =\frac{1}{3} \int_{0}^{2 \pi}[-\cos \phi]_{0}^{\pi / 3} d \theta \\
& =-\frac{1}{3} \int_{0}^{2 \pi}\left[\cos \frac{\pi}{3}-\cos 0\right] d \theta=-\frac{1}{3} \int_{0}^{2 \pi}\left[\frac{1}{2}-1\right] d \theta \\
& =-\frac{1}{3} \int_{0}^{2 \pi}\left(-\frac{1}{2}\right) d \theta=-\frac{1}{3} \times\left(-\frac{1}{2}\right) \int_{0}^{2 \pi} d \theta
\end{aligned}
$$

Now, integrating the term of θ, we have

$$
V=\frac{1}{6}[\theta]_{0}^{2 \pi}=\frac{1}{6}[2 \pi-0]=\frac{\pi}{3}
$$

SOL 1.100 Option (A) is correct.

Let,

$$
A=\left[\begin{array}{rrr}
8 & x & 0 \\
4 & 0 & 2 \\
12 & 6 & 0
\end{array}\right]
$$

For singularity of the matrix $|A|=0$

$$
\begin{aligned}
\left|\begin{array}{rrr}
8 & x & 0 \\
4 & 0 & 2 \\
12 & 6 & 0
\end{array}\right| & =0 \\
8[0-2 \times 6]-x[0-24]+0[24-0] & =0 \\
8 \times(-12)+24 x & =0 \\
-96+24 x & =0 \Rightarrow x=\frac{96}{24}=4
\end{aligned}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

SOL 1.101 Option (A) is correct
Let,

$$
\begin{array}{rlr}
f(x) & =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x} \times \frac{x}{x} & \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2} \times x & \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& =(1)^{2} \times 0=0 &
\end{array}
$$

Alternative :
Let

$$
\begin{aligned}
f(x) & =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x} \\
f(x) & =\lim _{x \rightarrow 0} \frac{2 \sin x \cos x}{1} \\
& =\lim _{x \rightarrow 0} \frac{\sin 2 x}{1}=\frac{\sin 0}{1}=0
\end{aligned}
$$

$$
\left[\frac{0}{0} \text { form }\right]
$$

Apply L-Hospital rule

SOL 1.102 Option (D) is correct.
Accuracy of Simpson's rule quadrature is $O\left(h^{5}\right)$

SOL 1.103 Option (C) is correct.
Let,

$$
A=\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right]
$$

The characteristic equation for the eigen value is given by,

$$
\begin{aligned}
|A-\lambda I| & =0 \\
\left|\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right| & =0 \\
\left|\begin{array}{rr}
4-\lambda & 1 \\
1 & 4-\lambda
\end{array}\right| & =0 \\
(4-\lambda)(4-\lambda)-1 & =0 \\
(4-\lambda)^{2}-1 & =0 \\
\lambda^{2}-8 \lambda+15 & =0
\end{aligned}
$$

Solving above equation, we get

$$
\lambda=5,3
$$

SOL 1.104 Option (C) is correct.
Given : $\quad x+2 y+z=6$

$$
\begin{array}{r}
2 x+y+2 z=6 \\
x+y+z=5
\end{array}
$$

Comparing to $A x=B$, we get

GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 2 \\
1 & 1 & 1
\end{array}\right], B=\left[\begin{array}{l}
6 \\
6 \\
5
\end{array}\right]
$$

Write the system of simultaneous equations in the form of Augmented matrix,

$$
\begin{aligned}
{[A: B] } & =\left[\begin{array}{rrrrr}
1 & 2 & 1 & : & 6 \\
2 & 1 & 2 & : & 6 \\
1 & 1 & 1 & : & 5
\end{array}\right] \quad R_{2} \rightarrow R_{2}-2 R_{1} \text { and } R_{3} \rightarrow 2 R_{3}-R_{2} \\
& \sim\left[\begin{array}{rrrrr}
1 & 2 & 1 & : & 6 \\
0 & -3 & 0 & : & -6 \\
0 & 1 & 0 & : & 4
\end{array}\right] \\
& \sim\left[\begin{array}{rrrrr}
1 & 2 & 1 & : & 6 \\
0 & -3 & 0 & : & -6 \\
0 & 0 & 0 & : & 6
\end{array}\right]
\end{aligned}
$$

It is a echelon form of matrix.
Since $\rho[A]=2$ and $\rho[A: B]=3$

$$
\rho[A] \neq \rho[A: B]
$$

So, the system has no solution and system is inconsistent.

SOL 1.105

Option (B) is correct.
Given : $y=x^{2}$ and $y=x$.
The shaded area shows the areã, which is bounded by the both curves.

Solving given equation, we get the intersection points as,
In $y=x^{2}$ putting $y=x$ we have $x=x^{2}$ or $x^{2}-x=0$ which gives $x=0,1$ Then from $y=x$ we can see that curve $y=x^{2}$ and $y=x$ intersects at point $(0,0)$ and $(1,1)$. So, the area bounded by both the curves is

$$
A=\int_{x=0}^{x=1} \int_{y=x}^{y=x^{2}} d y d x=\int_{x=0}^{x=1} d x \int_{y=x}^{y=x^{2}} d y=\int_{x=0}^{x=1} d x[y]_{x}^{x^{2}}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

$$
=\int_{x=0}^{x=1}\left(x^{2}-x\right)=\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}=\frac{1}{6} \text { unit }^{2}
$$

Area is never negative

SOL 1.106 Option (A) is correct.

$$
\begin{aligned}
\frac{d y}{d x}+y^{2} & =0 \\
\frac{d y}{d x} & =-y^{2} \\
-\frac{d y}{y^{2}} & =d x
\end{aligned}
$$

Integrating both the sides, we have

$$
\begin{aligned}
-\int \frac{d y}{y^{2}} & =\int d x \\
y^{-1} & =x+c \quad \Rightarrow y=\frac{1}{x+c}
\end{aligned}
$$

SOL 1.107 Option (C) is correct.
Given :

$$
\boldsymbol{F}=x \boldsymbol{i}-y \boldsymbol{j}
$$

First Check divergency, for divergence,

$$
\text { Grade } \boldsymbol{F} \equiv \nabla \cdot \boldsymbol{F}=\left[\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right] \cdot[x \boldsymbol{i}-y \boldsymbol{j}]=1-1=0
$$

So we can say that \boldsymbol{F} is divergence free.
Now checking the irrationalit;. Forirritation the curl $\boldsymbol{F}=0$

$$
\begin{aligned}
\text { Curl } \boldsymbol{F} & =\nabla \times \boldsymbol{F}=\left[\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right] \times[x \boldsymbol{i}-y \boldsymbol{j}] \\
& =\left[\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x & -y & 0
\end{array}\right]=\boldsymbol{i}[0-0]-\boldsymbol{j}[0-0]+\boldsymbol{k}[0-0]=0
\end{aligned}
$$

So, vector field is irrotational. We can say that the vector field is divergence free and irrotational.

SOL 1.108 Option (B) is correct.
Let

$$
f(t)=\sin \omega t
$$

From the definition of Laplace transformation

$$
\begin{aligned}
\mathcal{L}[F(t)] & =\int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{\infty} e^{-s t} \sin \omega t d t \\
& =\int_{0}^{\infty} e^{-s t}\left(\frac{e^{i \omega t}-e^{-i \omega t}}{2 i}\right) d t
\end{aligned}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

$$
\begin{aligned}
\sin \omega t & =\frac{e^{i \omega t}-e^{-i \omega t}}{2 i}=\frac{1}{2 i} \int_{0}^{\infty}\left(e^{-s t} e^{i \omega t}-e^{-s t} e^{-i \omega t}\right) d t \\
& =\frac{1}{2 i} \int_{0}^{\infty}\left[e^{(-s+i \omega) t}-e^{-(s+i \omega) t}\right] d t
\end{aligned}
$$

Integrating above equation, we get

$$
\begin{aligned}
\sin \omega t & =\frac{1}{2 i}\left[\frac{e^{(-s+i \omega) t}}{-s+i \omega}-\frac{e^{-(s+i \omega) t}}{-(s+i \omega)}\right]_{0}^{\infty} \\
& =\frac{1}{2 i}\left[\frac{e^{(-s+i \omega) t}}{-s+i \omega}+\frac{e^{-(s+i \omega) t}}{(s+i \omega)}\right]_{0}^{\infty}
\end{aligned}
$$

Substitute the limits, we get

$$
\begin{aligned}
\sin \omega t & =\frac{1}{2 i}\left[0+0-\left(\frac{e^{0}}{(-s+i \omega)}+\frac{e^{-0}}{s+i \omega}\right)\right] \\
& =-\frac{1}{2 i}\left[\frac{s+i \omega+i \omega-s}{(-s+i \omega)(s+i \omega)}\right] \\
& =-\frac{1}{2 i} \times \frac{2 i \omega}{(i \omega)^{2}-s^{2}}=\frac{-\omega}{-\omega^{2}-s^{2}}=\frac{\omega}{\omega^{2}+s^{2}}
\end{aligned}
$$

Alternative :
From the definition of Laplace transformation

$$
\mathcal{L}[F(t)]=\int_{0}^{\infty} e^{-s t} \sin \omega t d t
$$

We know $\int e^{a t} \sin b t d t=\frac{e^{a t}}{a^{2}+b^{2}}[a \sin b t-b \cos b t] \quad\binom{a=-s$ and }{$b=\omega}$
Then,

$$
\begin{aligned}
& \text { n, } \begin{aligned}
\mathcal{L} & {[\sin \omega t]=\left[\frac{e^{-s t}}{s^{2}+\omega^{2}}(-s \sin \omega t-\omega \cos \omega t)\right]_{0}^{\infty} } \\
& =\left[\frac{e^{-\infty}}{s^{2}+\omega^{2}}(-s \sin \infty-\omega \cos \infty)\right]-\left[\frac{e^{-0}}{s^{2}+\omega^{2}}(-s \sin 0-\omega \cos 0)\right] \\
& =0-\frac{1}{s^{2}+\omega^{2}}[0-\omega]=-\frac{1}{s^{2}+\omega^{2}}(-\omega) \\
\mathcal{L}[\sin \omega t] & =\frac{\omega}{s^{2}+\omega^{2}}
\end{aligned}
\end{aligned}
$$

SOL 1.109 Option (D) is correct.
Given : black balls $=5$, Red balls $=5$, Total balls $=10$
Here, two balls are picked from the box randomly one after the other without replacement. So the probability of both the balls are red is

$$
P=\frac{{ }^{5} C_{0} \times{ }^{5} C_{2}}{{ }^{10} C_{2}}=\frac{\frac{5!}{0!\times 5!} \times \frac{5!}{3!2!}}{\frac{10!}{3!2!}}=\frac{1 \times 10}{45}=\frac{10}{45}=\frac{2}{9} \quad{ }^{n} C_{r}=\frac{\underline{n}}{\underline{r \mid n-r}}
$$

Alternate Method :

Given: Black balls $=5$,
GATE Previous Year Solved Paper For Mechanical Engineering

$$
\begin{aligned}
\text { Red balls } & =5 \\
\text { Total balls } & =10
\end{aligned}
$$

The probability of drawing a red bell,

$$
P_{1}=\frac{5}{10}=\frac{1}{2}
$$

If ball is not replaced, then box contains 9 balls.
So, probability of drawing the next red ball from the box.

$$
P_{2}=\frac{4}{9}
$$

Hence, probability for both the balls being red is,

$$
P=P_{1} \times P_{2}=\frac{1}{2} \times \frac{4}{9}=\frac{2}{9}
$$

SOL 1.110 Option (A) is correct.
We know that a dice has 6 faces and 6 numbers so the total number of cases (outcomes) $=6 \times 6=36$
And total ways in which sum of the numbers on the dices is eight, $(2,6)(3,5)(4,4)(5,3)(6,2)$
So, the probability that the sum of the numbers eight is,

$$
p=\frac{5}{36}
$$

sol 1.111 Option (D) is correct.
We have to draw the graph on $x-y$ axis from the given functions.

$$
f(x)=\left\{\begin{array}{cl}
-x & x \leq-1 \\
0 & x=0 \\
x & x \geq 1
\end{array}\right.
$$

It clearly shows that $f(x)$ is differential at $x=-1, x=0$ and $x=1$, i.e. in the domain $[-1,1]$.

So, (a), (b) and (c) are differential and $f(x)$ is maximum at $(x,-x)$.

SOL 1.112 Option (B) is correct.
If the scatter diagram indicates some relationship between two variables X
GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY
ISBN: 9788192276250
and Y, then the dots of the scatter diagram will be concentrated round a curve. This curve is called the curve of regression.
Regression analysis is used for estimating the unknown values of one variable corresponding to the known value of another variable.

SOL 1.113 Option (B) is correct.
Given: $3 x+2 y+z=4$

$$
\begin{array}{r}
x-y+z=2 \\
-2 x+2 z=5
\end{array}
$$

The Augmented matrix of the given system of equation is

$$
\begin{aligned}
& \qquad[A: B]=\left[\begin{array}{rrrrr}
3 & 2 & 1 & : & 4 \\
1 & -1 & 1 & : & 2 \\
-2 & 0 & 2 & : & 5
\end{array}\right] \\
& \\
& \sim\left[\begin{array}{rrrrr}
3 & 2 & 1 & : & 4 \\
-2 & -3 & 0 & : & -2 \\
0-2 & 4 & : & 9
\end{array}\right] \\
& \text { Here } \rho[A: B]=\rho[A]=3=n \text { (number of unknown) } \\
& \text { Then the system of equation has a unique solution. }
\end{aligned}
$$

SOL 1.114
Option (B) is correct.
Given: $\quad f(x, y)=2 x^{2}+2 x y-y^{3}$
Partially differentiate this function w.r.t. x and y,

$$
\frac{\partial f}{\partial x}=4 x+2 y, \frac{\partial f}{\partial y}=2 x-3 y^{2}
$$

For the stationary point of the function, put $\partial f / \partial x$ and $\partial f / \partial y$ equal to zero.
and

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=4 x+2 y=0 & \Rightarrow 2 x+y=0 \\
\frac{\partial f}{\partial y}=2 x-3 y^{2}=0 & \Rightarrow 2 x-3 y^{2}=0 \tag{ii}
\end{array}
$$

From equation (i), $y=-2 x$ substitute in equation (ii),

$$
\begin{aligned}
2 x-3(-2 x)^{2} & =0 \\
2 x-3 \times 4 x^{2} & =0 \\
6 x^{2}-x & =0 \Rightarrow x=0, \frac{1}{6}
\end{aligned}
$$

From equation (i),
For $x=0, \quad y=-2 \times(0)=0$
and for $x=\frac{1}{6}, \quad y=-2 \times \frac{1}{6}=-\frac{1}{3}$
So, two stationary point at $(0,0)$ and $\left(\frac{1}{6},-\frac{1}{3}\right)$
GATE Previous Year Solved Paper For Mechanical Engineering

SOL 1.115 Option (B) is correct.

$$
\begin{aligned}
& \text { Sample space }=(1,1),(1,2) \ldots(1,8) \\
& (2,1),(2,2) \ldots(2,8) \\
& (3,1),(3,2) \ldots(3,8) \\
& \vdots \quad \vdots \quad \vdots \quad \vdots \\
& (8,1),(8,2) \ldots(8,8)
\end{aligned}
$$

Total number of sample space $=8 \times 8=64$
Now, the favourable cases when Manish will arrive late at D

$$
=(6,8),(8,6) \ldots(8,8)
$$

Total number of favourable cases $=13$
So, \quad Probability $=\frac{\text { Total number of favourable cases }}{\text { Totol number of sample space }}$

$$
=\frac{13}{64}
$$

SOL 1.116 Option (B) is correct.
Divergence is defined as $\nabla \cdot r$
where

$$
r=x \boldsymbol{i}+y \mathbf{j}+z \boldsymbol{k}
$$

and

So,

$$
\begin{aligned}
\nabla & =\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k} \\
\nabla \cdot r= & \left(\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right) \cdot(x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}) \\
\nabla \cdot r & =1+1+1=3
\end{aligned}
$$

SOL 1.117 Option (B) is correct.

$$
\text { Given : } \quad \begin{aligned}
x+y & =2 \\
2 x+2 y & =5
\end{aligned}
$$

The Augmented matrix of the given system of equations is

$$
[A: B]=\left[\begin{array}{llll}
1 & 1 & : & 2 \\
2 & 2 & : & 5
\end{array}\right]
$$

Applying row operation, $R_{2} \rightarrow R_{2}-2 R_{1}$

$$
\begin{aligned}
{[A: B] } & =\left[\begin{array}{llll}
1 & 1 & : & 2 \\
0 & 0 & : & 1
\end{array}\right] \\
\rho[A] & =1 \neq \rho[A: B]=2
\end{aligned}
$$

So, the system has no solution.

SOL 1.118 Option (D) is correct.
Given : $\quad f(x)=|x|$

GATE Previous Year Solved Paper For Mechanical Engineering
Published by: NODIA and COMPANY

$$
\begin{aligned}
f(x) & =\left\{\begin{array}{cc}
x & \text { if } x>0 \\
0 & \text { if } x=0 \\
-x & \text { if } x<0
\end{array}\right. \\
L f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{-(-h)}{-h}-0=-1 \\
R f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h-0}{h}=1
\end{aligned}
$$

Since $\quad L f^{\prime}(0) \neq R f^{\prime}(0)$
So, derivative of $f(x)$ at $x=0$ does not exist.

SOL 1.119 Option (A) is correct.
The surface integral of the normal component of a vector function F taken around a closed surface S is equal to the integral of the divergence of F taken over the volume V enclosed by the surface S.
Mathematically

$$
\iint_{S} F \cdot \boldsymbol{n} d S=\iiint_{V} \operatorname{div} \boldsymbol{F} d v
$$

So, Gauss divergence theorem relates surface integrals to volume integrals.

SOL 1.120 Option (A) is correct.
Given :

Using the principle of maxima - minima and put $f^{\prime}(x)=0$

$$
x^{2}-1=0 \Rightarrow x= \pm 1
$$

Hence at $x=-1$,

$$
f^{\prime \prime}(x)=-2<0 \quad \text { (Maxima) }
$$

$$
\text { at } x=1, \quad f^{\prime \prime}(x)=2>0 \quad \text { (Minima) }
$$

So, $f(x)$ is minimum at $x=1$

SOL 1.121 Option (B) is correct.

Let

$$
\begin{aligned}
A & =\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right], B=\left[\begin{array}{lll}
a_{2} & b_{2} & c_{2}
\end{array}\right] \\
C & =A B \\
& =\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right] \times\left[\begin{array}{lll}
a_{2} & b_{2} & c_{2}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} a_{2} & a_{1} b_{2} & a_{1} c_{2} \\
b_{1} a_{2} & b_{1} b_{2} & b_{1} c_{2} \\
c_{1} a_{2} & c_{1} b_{2} & c_{1} c_{2}
\end{array}\right]
\end{aligned}
$$

The 3×3 minor of this matrix is zero and all the 2×2 minors are also zero. So the rank of this matrix is 1 .

GATE Previous Year Solved Paper For Mechanical Engineering

$$
\rho[C]=1
$$

SOL 1.122 Option (D) is correct.
In a coin probability of getting head $p=\frac{1}{2}$ and probability of getting tail,

$$
q=1-\frac{1}{2}=\frac{1}{2}
$$

When unbiased coin is tossed three times, then total possibilities are

H	H	H
H	H	T
H	T	H
T	H	H
H	T	T
T	T	H
T	H	T
T	T	T

From these cases, there are three cases, when head comes exactly two times. So, the probability of getting head exactly two times, when coin is tossed 3 times is,

$$
P={ }^{3} C_{2}(p)^{2}(q)^{1}=3 \times\left(\frac{1}{2}\right)^{2} \times \frac{1}{2}=\frac{3}{8}
$$

GATE Previous Year Solved Paper For Mechanical Engineering

GATE Multiple Choice Questions For Mechanical Engineering

By NODIA and Company

Available in Three Volumes

Features:

- The book is categorized into chapter and the chapter are sub-divided into units
- Unit organization for each chapter is very constructive and covers the complete syllabus
- Each unit contains an average of 40 questions
- The questions match to the level of GATE examination
- Solutions are well-explained, tricky and consume less time. Solutions are presented in such a way that it enhances you fundamentals and problem solving skills
- There are a variety of problems on each topic
- Engineering Mathematics is also included in the book

Contents

VOLUME-1 Applied Mechanics and Design

UNIT 1. Engineering Mechanics

1.1 Equilibrium of forces
1.2 Structure
1.3 Friction
1.4 Virtual work
1.5 Kinematics of particle
1.6 Kinetics of particle
1.7 Plane kinematics of rigid bodies
1.8 Plane kinetics of rigid bodies

UNIT 2. Strength of Material

2.1 Stress and strain

2.2 Axial loading
2.3 Torsion
2.4 Shear force and bending moment

2.5 Transformation of stress and strain

2.6 Design of beams and shafts
2.7 Deflection of beams and shafts

2.8 Column

2.9 Energy methods

UNIT 3. Machine Design

3.1 Design for static and dynamic loading
3.2 Design of joints
3.3 Design of shaft and shaft components
3.4 Design of spur gears
3.5 Design of bearings
3.6 Design of clutch and brakes

UNIT 4. Theory of Machine

4.1 Analysis of plane mechanism
4.2 Velocity and acceleration
4.3 Dynamic analysis of slider-crank and cams
4.4 Gear-trains
4.5 Flywheel
4.6 vibration

VOLUME-2 Fluid Mechanics and Thermal Sciences

UNIT 5. Fluid Mechanics

5.1 Basic concepts and properties of fluids
5.2 Pressure and fluid statics
5.3 Fluid kinematics and Bernoulli Equation
5.4 Flow analysis using control volume
5.5 Flow analysis using differential method
5.6 Internal flow
5.7 External flow
5.8 Open channel flow
5.9 Turbomachinary

UNIT 6. Heat Transfer

6.1 Basic concepts and modes of Heat transfer
6.2 Fundamentals of conduction
6.3 Steady heat conduction
6.4 Transient heat conduction
6.5 Fundamentals of convection
6.6 Free convection
6.7 Forced convection
6.8 Fundamentals of thermal radiation
6.9 Radiation Heat transfer
6.10 Heat exchangers.

UNIT 7. Thermodynamics

7.1 Basic concepts and Energy analysis
7.2 Properties of pure substances
7.3 Energy analysis of closed system
7.4 Mass and energy analysis of control volume
7.5 Second law of thermodynamics
7.6 Entropy
7.7 Gas power cycles
7.8 Vapour and combined power cycles
7.9 Refrigeration and air conditioning

VOLUME-3 Manufacturing and Industrial Engineering

UNIT 8. Engineering Materials

8.1 Structure and properties of engineering materials, heat treatment, stress-strain diagrams for engineering materials

UNIT 9. Metal Casting:

Design of patterns, moulds and cores; solidification and cooling; riser and gating design, design considerations.

UNIT 10. Forming:

Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy.

UNIT 11. Joining:

Physics of welding, brazing and soldering; adhesive bonding; design considerations in welding.

UNIT 12. Machining and Machine Tool Operations:

Mechanics of machining, single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, principles of design of jigs and fixtures

UNIT 13. Metrology and Inspection:

Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly.

UNIT 14. Computer Integrated Manufacturing:

Basic concepts of CAD/CAM and their integration tools.

UNIT 15. Production Planning and Control:

Forecasting models, aggregate production planning, scheduling, materials requirement planning

UNIT 16. Inventory Control:

Deterministic and probabilistic models; safety stock inventory control systems.

UNIT 17. Operations Research:

Linear programming, simplex and duplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.

UNIT 18. Engineering Mathematics:

18.1 Linear Algebra

18.2 Differential Calculus

18.3 Integral Calculus

18.4 Differential Equation
18.5 Complex Variable
18.6 Probability \& Statistics
18.7 Numerical Methods

